
2026/02/09 23:09 1/19 DevOps for the Agile Enterprise

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

Table of Contents
DevOps for the Agile Enterprise 3 ..
Background 3 ...
Attendees 3 ..
Quotes 4 ...
Actions 4 ...
Materials 4 ...
Key Ideas 4 ...
Framework 5 ..
Notes 5 ..

DevOps Fundamentals 5 ...
What is DevOps 6 ..
Why is DevOps Important 6 ...
DevOps Principles (CALMS) 7 ..
The Three Ways 9 ..

The Deployment Pipeline 11 ..
Kick-starting Your DevOps Program 16 ...

Define DevOps Objectives 16 ..
Build DevOps COE 16 ..
Prepare for Action 17 ...
Execute and Evolve 17 ..

Miscellaneous 17 ...
Version Control 17 ...
Exercises 18 ..
What kind of skills do we need? 19 ..
Additional Note 19 ...

Last update:
2020/06/02 14:21 devops_for_the_agile_enterprise https://www.hanssamios.com/dokuwiki/devops_for_the_agile_enterprise?rev=1591132900

https://www.hanssamios.com/dokuwiki/ Printed on 2026/02/09 23:09

2026/02/09 23:09 3/19 DevOps for the Agile Enterprise

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

DevOps for the Agile Enterprise

Background

History is that Scaled Agile has purchased licensing rights to Icon (Mark Rix) material and with be
releasing a course based on this shortly. There are a couple of differences in approach but basics are the
same. Differences include:

CALMS (or rather SMALC as the way to present this as Culture comes last) vs SAFe (CALMR)
approach
Materials will change. For example, there is a personal view “helping Mary and Ralph solve their
problems” to drive some the exercises.

From introduction:

“In this two-day course, you’ll gain an understanding of the role of DevOps in a Scaled Agile organization.
Unlike other training that focuses only on the mechanics of DevOps, Icon’s DevOps for the Agile
Enterprise course explores the role of DevOps in the context of the entire IT value stream, and prepares
you to successfully plan and implement DevOps capabilities that significantly extend the benefits of Agile
transformations. This includes understanding the full- spectrum software delivery ecosystem, where Agile
transformations typically are and are not effective; how Agile and DevOps are “better together;” and
what people, processes, and technology must be aligned throughout the organization, to achieve true
enterprise agility.

Objectives

Understand prevailing industry definitions of DevOps
Define DevOps in the context of your enterprise
Describe the benefits of DevOps and the metrics used to measure them
Describe the 5 stages of the deployment pipeline
Understand how DevOps and Agile work together to achieve continuous delivery
Understand key DevOps roles and responsibilities
Identify deployment challenges and opportunities in your environment
Build and prioritize a DevOps transformation backlog
Launch a DevOps action plan that extends the benefits of Agile”

Attendees

Teacher: Dan James

Support: Adam Beck

Last update:
2020/06/02 14:21 devops_for_the_agile_enterprise https://www.hanssamios.com/dokuwiki/devops_for_the_agile_enterprise?rev=1591132900

https://www.hanssamios.com/dokuwiki/ Printed on 2026/02/09 23:09

Quotes

“Everyone is doing DevOps; most are doing it poorly.” — Dan James
“WIP is a surrogate for productivity in the minds of managers” — Unknown
“Definition of a Defect - evidence of a test that was not written” — Unknown
“In any value stream, there is always a direction of flow, and there is always one and only one
constraint; any improvement not made at that constraint is an illusion” — Eli Goldratt
“The most expensive words in business: 'we have always done it that way'” — Unknown

Actions

Good starting point
Establish DevOps transformation team
Consider having all SDL (architects) attend DevOps course to help understand framework of
thinking (build subject matter expertise)
Message for FI - “software is eating the world” - what does this mean in our context?
Publish these notes for others

Materials

Video “”(Short) History of DevOps“: https://www.youtube.com/watch?v=o7-IuYS0iSE (note: no
Phoenix Project)
Report “State of DevOps” from Puppet (a tool provider):
https://puppet.com/resources/whitepaper/state-of-devops-report
Video “Can You Walk in a Straight Line While Blindfolded”:
https://www.npr.org/sections/krulwich/2011/06/01/131050832/a-mystery-why-can-t-we-walk-straigh
t
Video “One Piece Flow Versus Batch Production”: https://www.youtube.com/watch?v=JoLHKSE8sfU
Video “Lean - One Piece Flow is Simple”: https://www.youtube.com/watch?v=ciJckWCMvpA
Video “A Day of Mob Programming”: https://www.youtube.com/watch?v=dVqUcNKVbYg
Book “Valve Handbook for New Employees”:
http://www.valvesoftware.com/company/Valve_Handbook_LowRes.pdf

Key Ideas

Core idea: DevOps is not about tools or automation. Its about how we deploy work and requires
that we understand the deployment pipeline we have today before we start automating.
The automation paradox “Automation is essential to DevOps but the wrong tools can bury you in a
hurry. Don't be hypnotized by shiny objects.”

http://www.youtube.com/watch?v=o7-IuYS0iSE
http://www.npr.org/sections/krulwich/2011/06/01/131050832/a-mystery-why-can-t-we-walk-straight
http://www.npr.org/sections/krulwich/2011/06/01/131050832/a-mystery-why-can-t-we-walk-straight
http://www.youtube.com/watch?v=JoLHKSE8sfU
http://www.youtube.com/watch?v=ciJckWCMvpA
http://www.youtube.com/watch?v=dVqUcNKVbYg
http://www.valvesoftware.com/company/Valve_Handbook_LowRes.pdf

2026/02/09 23:09 5/19 DevOps for the Agile Enterprise

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

Understand that for most DevOps transformations the problem is a fragmented deployment
pipeline caused by excessive WIP, cold handoffs, “black box” processing
Software is eating the world
And if you don't get out ahead of it you can expect to be part of history
“We are a technology company with an insurance / banking license”
Benefits is we can learn faster - software is not static and so can experiment
Characteristics of a “good” lean implementation:
Out-learn the competition
Take learning and out-improve the competition
Idea of “hypothesis driven development”
Like the cycle view of the process:
Build cycle: maximize development productivity through continuous integration.
Test cycle: maximize delivery efficiency through continuous delivery.
Release cycle: maximize speed to market though continuous deployment.
Transition cycle: maximize business value.
Idea that we should monitor “business value” through measures (eg leading indicators and the
business hypothesis) as well as the health of the application.
Designing “immutable architecture” into our approach.
Two basic approaches to undertaking an agile transformation (and there is benefit in doing both):
Top down via value
Bottom up via stitching things together (i.e. in place create teams, talk to your customrers and
improve)

Note: DevOps can help drive this approach
Idea to clean up legacy code:
Monitor the usage of the code
Then focus on removing things one-by-one
This reduces code incrementally
Result reported: 58% reduction in the number of functions
Idea on course Kanban
Set WIP limit to 2 - breaks might mean we are in the middle of an item
Have volunteer from room move kanban (improve engagement?)
Have people understand Valve Employee Handbook (we are competing for these people)

Framework

Notes

DevOps Fundamentals

https://www.hanssamios.com/dokuwiki/_detail/image_file:2018_03_12.jpg?id=devops_for_the_agile_enterprise

Last update:
2020/06/02 14:21 devops_for_the_agile_enterprise https://www.hanssamios.com/dokuwiki/devops_for_the_agile_enterprise?rev=1591132900

https://www.hanssamios.com/dokuwiki/ Printed on 2026/02/09 23:09

What is DevOps

Base thinking is “agile is good at developing code but this does not reduce time-to-market”. Time to
market is the business need. “Agile gets developed; DevOps gets deployed”.

General positioning is that agile creates, DevOps is about deployment. While this is a hard line (and
not really true as any worthwhile agile development worries about deployment and support as well
and has to start getting operations involved), its not bad for positioning to help people who are new
to DevOps.
Agile (in the course the context of SAFe) is Concept to Code
DevOps is Code to Cash

Goal: New code has opportunity to go all the way to release.

Difference between development and operations:

Agile @ Scale (Concept to Code) DevOps (Code to Cash)
Upstream Downstream
Focus: Design & Build Focus: Package & Deliver
Analog: New Product Development Analog: Manufacturing
High uncertainty Low uncertainty
Change is welcome Change is NOT welcome
Output is non-deterministic / unpredictable Output is deterministic / predictable
Lean underpinnings Lean underpinnings

Development and operations mindset start at odds to eachother as development is all about change, and
operations is all about stability.

Definition from Wikipedia: https://en.wikipedia.org/wiki/DevOps Note: this has changed from definition
given in course:

“DevOps is practice that emphasizes the collaboration and communication of both software developers
and other information technology (IT) professionals while automating the process of software delivery
and infrastructure changes. It aims at establishing a culture and environment where building, testing,
and releasing software can happen rapidly, frequently, and more reliably.”

No one way of doing it.

Why is DevOps Important

Software is eating the world

And if you don't get out ahead of it you can expect to be part of history
“We are a technology company with an insurance / banking license”
Benefits is can learn faster - software is not static and so can experiment

2026/02/09 23:09 7/19 DevOps for the Agile Enterprise

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

Example: Amazon

23,000 new code deploys a day and, at peek times (eg holiday shopping period) this doubles
(normal practice would be to lock down / freeze system for fear of breaking something)
Everything is automated, with exception of coding and peer review
From development to operations in less than 24 hours (absolute maximum)

Example: Facebook

You had Facebook Messenger on your phone for 1.5 years and you didn't know it (they were testing
it in production)

2016 State of DevOps report details benefits

3X fewer defects
24X faster recovery
200X more frequent development
2500X fast time to market

DevOps Principles (CALMS)

Principles:

Culture
Automation
Lean
Measurement
Sharing

But actually implemented more as SMLAC (as culture comes last)

Sharing

Start with Sharing

Need to understand how the process really works (we are all doing DevOps; mostly badly)
Need to establish reason to do something (out-learn the market, faster time to market)

Break-down silos, visualize how the work is really done today

Form dedicated cross-functional team(s) to address

Know all your customers

Include third parties

Inspect and adapt based on what you are seeing

Last update:
2020/06/02 14:21 devops_for_the_agile_enterprise https://www.hanssamios.com/dokuwiki/devops_for_the_agile_enterprise?rev=1591132900

https://www.hanssamios.com/dokuwiki/ Printed on 2026/02/09 23:09

When you have visualized the work you will get benefits:

Avoid surprises
Avoid re-work
Avoid delays
Avoid blame-game

Measurement

Then measure so that:

We can share knowledge about how the process really performing
We can establish a goal / direction - you have to know where you are going (see Can You Walk in a
Straight Line While Blindfolded:
https://www.npr.org/sections/krulwich/2011/06/01/131050832/a-mystery-why-can-t-we-walk-straigh
t)

Agree of common (SMART?) objectives / targets

Record baseline

Inspect and adapt

When you measure the work you will get benefits:

Cuts through opinion and rhetoric and gets to the truth
Establishes some “fixed points in space” so we can navigate

Lean

Now lean out (streamline) the process

Focus on

Remove waste (want to get to zero waste, but unlikely)
System thinking - optimize for the “system of delivery”
Theory of Constraints
Littles Law

Batch reduction: “WIP is a surrogate for productivity in the minds of managers” - watch “One Piece Flow
Versus Batch Production”: https://www.youtube.com/watch?v=JoLHKSE8sfU

“We want coders to test, and testers to code”

Mature teams must do a few of the XP practices

When you do this you will get:

http://www.npr.org/sections/krulwich/2011/06/01/131050832/a-mystery-why-can-t-we-walk-straight
http://www.npr.org/sections/krulwich/2011/06/01/131050832/a-mystery-why-can-t-we-walk-straight
http://www.youtube.com/watch?v=JoLHKSE8sfU

2026/02/09 23:09 9/19 DevOps for the Agile Enterprise

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

Biggest improvements with least amount of effort

Automation

Now automate the process to maximize speed and quality

Continuous integration / deployment
Automated testing and provisioning
Monitoring and telemetry

Don't automate anything until you understand the process and the process is sound

Often lowest hanging fruit is to automate the acceptance testing

When you do this you will

Be able to deliver value continuously
Receive immediate feedback
Maximum responsiveness

Which should lead to competitive advantage

Culture

Now use the outcomes to drive widespread cultural change

Over share the vision and the wins

Focus on

Publically reward / elevate change leaders
Re-engineer reward structure and work environment
Make risk taking safe

The Three Ways

1st Way: Flow

Aim is to get products to market faster by building a deployment pipeline

Metric: Deployment Lead Time

This is why we focus on making work visible, reducing batch sizes and WIP

Build quality in - do not allow defects to flow downstream

Last update:
2020/06/02 14:21 devops_for_the_agile_enterprise https://www.hanssamios.com/dokuwiki/devops_for_the_agile_enterprise?rev=1591132900

https://www.hanssamios.com/dokuwiki/ Printed on 2026/02/09 23:09

One definition of a defect - “evidence of a test that was not written”

Cost of defect:

In code: $50 to fix
In regression: $500 fix
In production: $5000 fix

This is hard - want it set up so that we have steps 1 to step n always flow in one direction (and never loop
backward)

This means you need to measure % complete and accurate at each step to understand where to focus

Theory of constraints quote “In any value stream, there is always a direction of flow, and there is always
one and only one constraint; any improvement not made at that constraint is an illusion”

Note: from class you really should not move to the second way until you have the first way done.

2nd Way: Feedback

Goal is to increase value delivered by carrying lessons learned into the next round

Make sure everyone is informed of issues

Business metrics drive this:

Mean time to resolve (MTTR)
Business outcomes (which we now monitor in the production system, for example)

This is where we use A/B testing (ie experiment with 2 outcomes and you set the system up, say, so that
one group of users see one screen, and another group of users see the other and you use data to
understand which meets the business need more effectively)

Inspect and adapt

3rd Way: Continuous learning and experimentation

Goal here is to create competitive advantage and a self-healing organization

We want experimentation and risk taking (safe environment)

Scientific method - “hypothesis driven development”

Self-sabotage as a tool (chaos monkey and its brethren)

Taking many small risks, not one big risk

2026/02/09 23:09 11/19 DevOps for the Agile Enterprise

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

The Deployment Pipeline

Deployment Pipeline Overview

Quotes from “The DevOps Handbook”

“The deployment pipeline ensures that all code is checked in to version control is automatically
built and tested in a production-like environment.”
“The role of the deployment pipeline is to ensure that all code and infrastructure are always in a
deployable state, and that all code checked in to trunk can be safely deployed into production.”

The Build Cycle

Business objective: maximize development productivity through continuous integration.

Agile context: working software every team increment (team / sprint DoD)

Development responsibility. Aim is to deliver bug free tested code into next cycle. Called “continuous
integration” in the slides.

Aim is to be able to do this at least once every 2 weeks. Note: this is lazy - should be able to do on every
“story”

Sample / generic build workflow:

Build: compile source files into deployable binaries and merge local changes with development
branch
Unit test: verify code functions as developer intended.
Idea here is to enforce “single responsibility” for functions so that unit tests make sense.
Integrate: merge dev branches to trunk frequently and to verify operational integrity of the code in
a production-simulated environment
May mean that you need to do some work to take a “hairball” and separate into independently
deployable chunks.
Acceptance test: validate stories against acceptance criteria in an integrated, production-simulated
environment
Environment need to be available to the developers and the developers need to use it.

Workflow
Step

Primary
Patterns Helper Patterns Measures Trigger Example

Tools

Build
Build
automation;
Version control

API-driven
development; Code
reviews

Frequency (how
often to build);
Cycle time (how
long to build)

Code commit
ANT, Maven,
MSBuild, Make,
…

Unit test Test automation Code reviews; TDD
Test coverage;
Frequency; Cycle
time

Successful
build JUnit, Unit, …

Last update:
2020/06/02 14:21 devops_for_the_agile_enterprise https://www.hanssamios.com/dokuwiki/devops_for_the_agile_enterprise?rev=1591132900

https://www.hanssamios.com/dokuwiki/ Printed on 2026/02/09 23:09

Workflow
Step

Primary
Patterns Helper Patterns Measures Trigger Example

Tools

Integrate
CI System; Gated
(automated)
commits

Trunk based
development; static
code analysis;
modular architecture

Frequency; Cycle
time

Successful
unit tests

Jenkins,
Bamboo, VSTS,
CircleCI,
TeamCity, …

Acceptance
test Test automation

Environment
configuration; Service
virtualization

Failure rate;
Cycle time;
Frequency

Successful (CI)
integration
run

Selenium,
FitNesse, VSTS

The Test Cycle

Business objective: maximize delivery efficiency through continuous delivery.

Agile (well SAFe) context: supports effective system demos and, when done right, means you have
potentially shippable features every system increment.

General target discussion. You have a certain amount of time it takes you to push a hot fix through, say
48 hours. If this is the case then you should set things up so that all code can run through this at “hot fix”
speed, at least initially. Ask yourself “how do you make this happen?”

Sample / generic workflow steps:

Integration testing: test new features with live connections to connected systems in a production-
like environment.
Regression testing: test existing features of a complete system in a production-like environment.
Need to address sunsetting of features as part of this.
Exploratory testing: manually test sophisticated usage scenarios to discover new test cases. Need
to figure out what makes sense here. For example, Amazon only does this type of testing on
security issues associated with their payment system. You may also want to consider Session
Based testing (see http://www.hanssamios.com/dokuwiki/what_is_session_based_testing) to put a
little structure into this.
Performance testing: provide assurance that system will perform reliably under extreme production
conditions. This is where you do all NFR type testing - security, resilience, etc. Are we meeting our
SLAs?

Can (should) be all done in parallel.

Workflow Step Primary
Patterns Helper Patterns Measures Trigger

Integration
testing

Test
automation

Deployment automation; Test
data management; Environment
configuration automation

Failure rate; Cycle
time; Test
coverage

Successful
acceptance test

Regession
testing

Test
automation

Deployment automation; Test
data management; Environment
configuration automation

Failure rate; Cycle
time; Test
coverage

Successful
acceptance test

http://www.hanssamios.com/dokuwiki/what_is_session_based_testing

2026/02/09 23:09 13/19 DevOps for the Agile Enterprise

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

Workflow Step Primary
Patterns Helper Patterns Measures Trigger

Exploratory
testing

Session based
testing?

Deployment automation; Test
data management; Environment
configuration automation

Failure rate; Cycle
time; Test
coverage

Successful
acceptance test

Performance
testing

Test
automation

Deployment automation; Test
data management; Environment
configuration automation; NFR's

Failure rate; Test
coverage

Successful
acceptance test

The Release Cycle

Business objective: maximize speed to market though continuous deployment.

Agile (SAFe) context: release level definition of done. Goal is to be able to release on demand.

Note: you can have a released system that the customer never sees.

This is all about production, so there are no “mocks” in this part of the cycle

Workflow step:

Configure: rapidly provisioned deployment environments in support of continuous value delivery
Stage: host fully validated potentially shippable features in a production grade environment, from
which they can be released on demand.
Concept of blue / green system lives here. Have “blue” system. Build “green” system. When you
are ready with the green system, switch load (load balancer - one idle, one live) from blue to green
system. If things go wrong, go back to blue system. Changes the way we think about the release
process. Potentially gives you “zero downtime” capability. See
https://docs.cloudfoundry.org/devguide/deploy-apps/blue-green.html for more information.
Transactional systems are a particular issue for these types of staging approaches. Need excellent
queueing system to make successful.
Deploy: release software changes to production with high frequency and low risk. Note that
deployment process needs to be tested as well, in version control, etc
Deployments don't have to be “all or nothing”. Could deploy based on geography, for example.
Deployment does not have to make feature available. You could deploy with feature toggle “off”
and test that way before turning it on. Other ideas are Amazon “kill switch” and “late binding”
(running software decides if code is used)
Verify: assure deployments behave as expected in production before they are released to end
users

Workflow
Step Primary Patterns Helper Patterns Measures Trigger Example Tools

Configure

Automated
provisioning
(infrastructure as
code); Teams self-
service

Version control;
Cloud computing;
Technical standards

Cycle time (one
day or less)

Successful
test cycle

Chef, Puppet,
Ansible, AWS,
Azure, …

Last update:
2020/06/02 14:21 devops_for_the_agile_enterprise https://www.hanssamios.com/dokuwiki/devops_for_the_agile_enterprise?rev=1591132900

https://www.hanssamios.com/dokuwiki/ Printed on 2026/02/09 23:09

Workflow
Step Primary Patterns Helper Patterns Measures Trigger Example Tools

Stage
Automated
environment
configuration

Deployment
automation; Blue /
green deployment;
Demo

Cycle time;
Frequency (at
least bi-weekly)

Successful
test cycle

Deploy Deployment
automation

Automated
environment
configuration; Self-
service

Cycle time;
Frequency; Lead
time

Customer
readiness

Octopus
Deploy, MS
Release
Manager, CA
Release
Manager,
UrbanCode,
XLDeploy, etc
…

Verify Test automation;
Automated rollback

Selective
deployment; Version
control

Cycle time
(desire 30mins or
less including
rollback); Failure
rate; Rollback
cycle time

Production
deployment

The Transition Cycle

Business objective: maximize business value

Agile context: operationalize critical feedback loops. Deployed solutions are viable and have sufficient
business value (and we are measuring it)

Workflow steps:

Monitor: quantitatively measure and respond to system and use behavior in real time.
Want to monitor the stack but also epic by epic, feature by feature (related to the business case)
“One week after we deployed this feature, here are the leading indicators so far …”
Want full stack telemetry with centralized data collection and reporting
Respond: detect and resolve production issues before they cause business disruption.
Want proactive detection coupled with rapid fix → release cycle. Set things up so that it goes
through “normal” cycle in the pipeline (no shortcuts). In other words, make this cycle fast!
Need version control so can rollback
Have tools to track sessions so we can replay and see what happens?
Immutable architecture is part of this discussion. Only deploy running images. If you need to
change an image you need to deploy a new image (see below). Prevents “configuration drift”.
Stabilize: assure sustainably high levels of business continuity, application service levels, and data
protection
Want no unplanned outages or security breaches
When you start to get confident with your system figure out tests to try and break it. Eg hack-a-
thon theme
This is where “Chaos Monkey” from Netflix fits in (only streaming vendor that wasn't concerned

2026/02/09 23:09 15/19 DevOps for the Agile Enterprise

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

when AWS went down as Chaos Monkey had already killed those processes and they knew they
were OK).
There are an army of Monkeys now - Netflix call it their “Simian Army” (see below):
Deliver: demonstrate tangible business value has been realized and customers are delighted
before operations takes custody.
Learnings here are feedstock into the backlog for the next set of development work
Want to consistently exceed customer expectation and value (return) targets

Workflow
Step

Primary
Patterns Helper Patterns Measures Example

Tools

Monitor Telemetry Data collection; visual displays % of stack monitored;
Custom SLAs and KPIs

Dynatrace, App
Dynamics, New
Relic, Splunk, …

Respond
Proactive
detection (work
to prevent)

Alerts and notifications; Server
reboot avoidance; Cross-team
collaboration (original team
fixes problems)

Mean time to restore
(MTTR)

Stabilize Business
continuity

Failover / disaster recovery;
Cyber security; Design for
operations

Outage frequency;
Emergency change % “Simian Army”

Deliver Business
alignment

Product adoption;
Transparency; Continuous
improvement

(Business) customer
satisfaction; (Business)
return on investment

Immutable architecture: From
https://thenewstack.io/a-brief-look-at-immutable-infrastructure-and-why-it-is-such-a-quest/

“Immutable simply means something that is created and left unchanged. Immutable things are
understood as is, without need to mutate them, and by that have no need to be mutable. Infrastructure
of course is word taken from the domain of architecture and physical design of space, for our virtual
realms of servers and software applications. Combined we have a created and unchanged set or piece of
architecture for hosting applications.

Unchanging infrastructure might sound like the opposite of what you’d want in an agile environment. But
what it means is that once the image is working, only a working image is deployed. When it’s time to
make changes a new is created, but the previous image is still available for rollback of the environment
itself. The fact that we can now create exact, versioned, timestamped versions of an entire environment
removes troubleshooting broken instances almost entirely. And thanks to OS-level virtualization, which is
spearheading the movement for immutable infrastructure, these images are extremely fast to deploy.”

Netflix's Simian Army (see https://medium.com/netflix-techblog/the-netflix-simian-army-16e57fbab116)

Chaos Monkey disables production instances of systems
Latency Monkey induces artificial delays in our RESTful client-server communication layer to
simulate service degradation and measures if upstream services respond appropriately.
Conformity Monkey finds instances that don’t adhere to best-practices and shuts them down.
Doctor Monkey taps into health checks that run on each instance as well as monitors other
external signs of health (e.g. CPU load) to detect unhealthy instances.
Janitor Monkey ensures that our cloud environment is running free of clutter and waste. It

Last update:
2020/06/02 14:21 devops_for_the_agile_enterprise https://www.hanssamios.com/dokuwiki/devops_for_the_agile_enterprise?rev=1591132900

https://www.hanssamios.com/dokuwiki/ Printed on 2026/02/09 23:09

searches for unused resources and disposes of them.
Security Monkey is an extension of Conformity Monkey. It finds security violations or
vulnerabilities, such as improperly configured AWS security groups, and terminates the offending
instances.
10–18 Monkey (short for Localization-Internationalization, or l10n-i18n) detects configuration and
run time problems in instances serving customers in multiple geographic regions, using different
languages and character sets.
Chaos Gorilla is similar to Chaos Monkey, but simulates an outage of an entire Amazon availability
zone.

Kick-starting Your DevOps Program

Define DevOps Objectives

Need to align your objectives and deployment pipeline to the value streams, and you might need to find
the these first

Then position DevOps to streamline the Code-to-Cash process

Then analyze the current deployment pipeline and measure:

Deployment lead time
Cycle times
Throughput (units / time)
Quality (% complete and accurate)

See exercises

Build DevOps COE

DevOps is an enabler at the portfolio level

Make incremenetal progress at the program and team levels
Ensure everyone understands the DevOps vision

Like most organizational transformations need to establish a transformation team:

Guiding coalition for on-going leadership support, providing “air-cover”, budget, impediment
removal
One each from the DevOps deployment pipeline (build, test, release, transition)
DevOps Transformation Team: Tactical implementation of DevOps
Core Team (dedicated)

DevOps lead practitioners and subject matter experts aimed at practices and tools (build,
test, release, transition / operate)
Function as an agile team

2026/02/09 23:09 17/19 DevOps for the Agile Enterprise

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

Say 2 people representing each of the main areas in the pipeline (build, test, release,
transition)

Extended Team
Advise core team on needed capabilities
Typically senior folks from around the organization

Prepare for Action

Value is a function of timely adoption, not raw capabilities. Focus on value. Go all in. Rack up wins. Over-
communicate.

Strategies:

Remember the 3 ways
Remember CALMS

The automation paradox “Automation is essential to DevOps but the wrong tools can bury you in a hurry.
Don't be hypnotized by shiny objects.”

Develop the DevOps backlog. For example:

Epic: Build deployment pipeline that will reduce deployment lead time by 50%
Feature: Instrument all pipeline activities in a single tool so we can monitor the code to cash cycle

Story: Visualize (manual) current workflow
Story: Track work items in workflow
Story: Measure cycle time for each activity
…

Feature: Add automated testing to the build cycle to reduce rework in the test cycle

Execute and Evolve

PDCA.

Never be satisfied.

Miscellaneous

Version Control

What kinds of things should you put in version control? Everything:

Requirements
Tests

Last update:
2020/06/02 14:21 devops_for_the_agile_enterprise https://www.hanssamios.com/dokuwiki/devops_for_the_agile_enterprise?rev=1591132900

https://www.hanssamios.com/dokuwiki/ Printed on 2026/02/09 23:09

Environments
Test data
Experiments
Configurations
Procedures (eg check in / out)
Services
Binaries
Rollback capability

Exercises

Assuming you have an idea of your value stream and now want to understand the deployment pipeline
assoicated with that value stream:

Build the value stream associated with the deployment pipeline as a starting point.1.
Do SWOT analysis on your deployment pipeline.2.
Calculate workflow performance3.
Estimate % Complete and Accurate (%CA) for each step (i.e. % the next step can process as-is)4.
Sum Total Processing Time (Total PT)5.
Sum Total Lead Time (Total LT)6.
Calculate Activity Ratio (Total PT / Total LT)7.
Multiple each step's %CA to obtain Rolling %CA8.
Identify biggest constraint across the entire workflow map9.
Once we have the problem10.
Focus here11.
Do root cause etc12.
Define target state (not end state)13.
Quantify expectation of change14.
Now everyone swarm on that problem15.
Repear16.
Determine KPI's for deployment pipeline. For example:17.

Cycle KPI Baseline Value Target Value Source of Truth
Build Build frequency
Build Code review %
Build Merge to trunk frequency
Test % Acceptance tests automated
Test % Integration tests automated
Test % Regression tests automated
Release Environment setup cycle time
Release % operational assets in version control
Release Deployment lead time
Release Mean time to resolve

2026/02/09 23:09 19/19 DevOps for the Agile Enterprise

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

What kind of skills do we need?
Build Test Release Transition

Goal Continuous integration Continuous delivery Continuous deployment Continuous value

Roles
Developer, Tester, Build
engineer, Database
developer, Architect

Tester (end to end),
Tester (NFR)

Configuration manager,
System administrator,
Release engineer

Production support,
System engineer,
Network engineer,
Security engineer,
Operations engineer

Skills

Trunk-based development,
API-driven development,
Code review, Environment
configuration, Build
automation, Continuous
integration, Test driven
development, Test
automation, Service
virtualization, Mocking /
stubbing, Feature toggles,
Application telemetry, Cyber
security, Version control

Test automation,
End to end testing,
Environement
configuration, Test
data management,
Version control

Automated provisioning,
Environment
configuration,
Automated deployment,
Selective deployment,
Blue / Green
deployment, Automated
rollback, Version control

Monitoring (full stack),
Incident management,
Problem
management,
Disaster recovery

Additional Note

Like the structure of this presentation - practices to “business why”. Some of the mapping might be a
little artificial but nice way to hang it all together.

Course, DevOps, SAFe, Learning, Coach, Consultant, Enterprise

~~LINKBACK~~ ~~DISCUSSION~~

From:
https://www.hanssamios.com/dokuwiki/ - Hans Samios' Personal Lean-Agile Knowledge Base

Permanent link:
https://www.hanssamios.com/dokuwiki/devops_for_the_agile_enterprise?rev=1591132900

Last update: 2020/06/02 14:21

https://www.hanssamios.com/dokuwiki/_detail/image_file:2018_03_15.jpg?id=devops_for_the_agile_enterprise
https://www.hanssamios.com/dokuwiki/tag:course?do=showtag&tag=Course
https://www.hanssamios.com/dokuwiki/tag:devops?do=showtag&tag=DevOps
https://www.hanssamios.com/dokuwiki/tag:safe?do=showtag&tag=SAFe
https://www.hanssamios.com/dokuwiki/tag:learning?do=showtag&tag=Learning
https://www.hanssamios.com/dokuwiki/tag:coach?do=showtag&tag=Coach
https://www.hanssamios.com/dokuwiki/tag:consultant?do=showtag&tag=Consultant
https://www.hanssamios.com/dokuwiki/tag:enterprise?do=showtag&tag=Enterprise
https://www.hanssamios.com/dokuwiki/
https://www.hanssamios.com/dokuwiki/devops_for_the_agile_enterprise?rev=1591132900

	Table of Contents
	DevOps for the Agile Enterprise
	Background
	Attendees
	Quotes
	Actions
	Materials
	Key Ideas
	Framework
	Notes
	DevOps Fundamentals
	What is DevOps
	Why is DevOps Important
	DevOps Principles (CALMS)
	Sharing
	Measurement
	Lean
	Automation
	Culture

	The Three Ways
	1st Way: Flow
	2nd Way: Feedback
	3rd Way: Continuous learning and experimentation

	The Deployment Pipeline
	Deployment Pipeline Overview
	The Build Cycle
	The Test Cycle
	The Release Cycle
	The Transition Cycle

	Kick-starting Your DevOps Program
	Define DevOps Objectives
	Build DevOps COE
	Prepare for Action
	Execute and Evolve

	Miscellaneous
	Version Control
	Exercises
	What kind of skills do we need?
	Additional Note

