
2021/06/20 05:08 1/2 "Bridging the Communication Gap: Specification by Example and Agile Acceptance Testing" - Gojko Adzic

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

Table of Contents
"Bridging the Communication Gap: Specification by Example and Agile Acceptance Testing"
- Gojko Adzic 1 ...
Review and Notes 1 ..
Want to Know More? 3 ...

Last
update:
2020/06/10
12:50

bridging_the_communication_gap_-_specification_by_example_and_agile_acceptance_testing_-_gojko_adzic https://www.hanssamios.com/dokuwiki/bridging_the_communication_gap_-_specification_by_example_and_agile_acceptance_testing_-_gojko_adzic

https://www.hanssamios.com/dokuwiki/ Printed on 2021/06/20 05:08

2021/06/20 05:08 1/3 "Bridging the Communication Gap: Specification by Example and Agile Acceptance Testing" - Gojko Adzic

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

"Bridging the Communication Gap:
Specification by Example and Agile Acceptance
Testing" - Gojko Adzic

Review and Notes

If you are having troubles collaborating with all stakeholders on user stories, if you find you are not clear
on requirements, then the advise in this book will help you get started. This is the book I wish I had when
I started down the pathway of using examples and “given-when-them” descriptions in place of conditions
of acceptance criteria (see How Can We Improve Collaboration on User Stories? for more information).

One of the ideas that we push with agile development is the idea that we should move away from
requirements documents and move to face-to-face communication to ensure that we are all on the same
page. When teams start to do this, they often find that there has not been clear communication of
requirements or something has been forgotten in the thinking process and so we feel like we are
constantly re-visiting work that “if we only had a requirements document” we would have addressed.
Another of ideas that really help teams get better in agile is the idea that you don't have a serial
workflow in sprints, design - development - testing, but rather try to do more in parallel and in a more
focussed way. If you are working either of these issues that this book will introduces you to (thinking)
tools that will help.

To quote the book “On most projects even today, writing code is the first time that we try to make the
solution really precise. At this point, a developer may have the same understanding of a point as the
business person making the request, but I would not bet on it. Work out the probabilities from the
experiment, and you’ll get about a 39% chance for this to happen. A tester will need to verify the result
which asks for another mind alignment and brings down the probabilities to 20%.”

The book proposes a process of “agile acceptance testing” to help understand what it is we are going to
build:

Use specific examples, in table form, showing conditions that drive the example, the expected
inputs and outputs. The idea is that tests and requirements are the same thing. Requirements are
often driven from examples, and examples also end up as tests. With enough examples, you can
build a full description of the future system.
Get everyone, analyst, product manager, stakeholder, developer, tester involved in the generation
of the examples so that all viewpoints are built into the system.
Employ “just in time” detailing in the form of a “specification workshop” an event that happens at
the beginning of the Sprint (at the latest) before anyone starts working on a story. “The workshop
starts with a business person, typically the product owner, business sponsor or an analyst, briefly
describing a piece of software that needs to be developed. He then explains how the code should
work once it is developed, providing realistic examples. Other workshop participants ask questions,
suggest additional examples that make the functionality clearer or expose edge cases that concern

https://www.hanssamios.com/dokuwiki/how_can_we_improve_collaboration_on_user_stories

Last
update:
2020/06/10
12:50

bridging_the_communication_gap_-_specification_by_example_and_agile_acceptance_testing_-_gojko_adzic https://www.hanssamios.com/dokuwiki/bridging_the_communication_gap_-_specification_by_example_and_agile_acceptance_testing_-_gojko_adzic

https://www.hanssamios.com/dokuwiki/ Printed on 2021/06/20 05:08

them. One of the main goals of the specification workshop is to flush out these additional cases
before the development starts, while business people are immediately available to discuss them.”
Capture the tests in terms of specifications, not scripts. Specifications can be in the form of tables
of inputs and outputs based on conditions and / or using the given - when - then format:

Given <some initial context>
When <an event occurs>
Then <ensure some outcomes>

Tables are more useful for expressing specifications, state machine transitions and calculation-
based rules. The expressiveness of natural language and the sequential style of writing help to get
a better understanding of the process for workflows (given-when-then)
These specific examples are also used to document the system (what it is expected to do) and so
become a mechanism for traceability (for business situations that require this).
The idea that acceptance tests are a “mistake-proofing device”. In order for them to be effective,
we have to be able to execute them frequently and quickly, without taking too much time from
developers, analysts, testers or anyone else. The best way to achieve this is to automate as many
tests as possible. This needs to be balanced with the requirement that acceptance tests also need
to “human readable” so that people on the business side of the house can understand the system
as well.
The idea that we should create and use a common “domain” language and that the language
should be used at all levels, even coding. There are many situations where developers will invent
their own language to describe a concept, but this leads to miscommunication. If developers come
up with a new concept, they should work with the business facing people about what to call that
concept, so the system maintains a common language.
The idea that you need both unit and acceptance tests. Unit tests act as a micro-target for code
units and they check whether the code is correct from a technical perspective. Unit tests should
examine edge cases such as empty strings, incorrect formats and various combinations of input
arguments that the programmer is concerned about. Acceptance tests act as a macro-target for
development of whole code modules and they verify that the product is correct from a business
perspective. They examine realistic business cases that the customers and business people are
concerned about. Unit tests ‘will insure the code is built right’, and that acceptance tests ‘insure
the right code is built’.
Todays “acceptance test” becomes part of tomorrow's “regression test”.
The idea that we should treat defects as evidence of missing tests.

Don't be put off by the word “testing”. This is really about specifying the functionality we are delivering
and ensuring that we have common understanding of the requirements, have dealt with edge conditions
and are clear about what is in and out of scope. If you want to introduce the practice in a corporate
environment with strictly defined roles, avoid using the word “testing”. Talk about executable
specifications or communicating with examples instead of acceptance tests.

If you use the ideas in this book you can expect to see benefits (to quote the book):

Product owners, Business Analysts and Project Managers: “Developers will actually read the
specifications that you write. You will be sure that developers and testers understand the
specifications correctly. You will be sure that they do not skip parts of the specifications. You can
track development progress easily. You can easily identify conflicts in business rules and

2021/06/20 05:08 3/3 "Bridging the Communication Gap: Specification by Example and Agile Acceptance Testing" - Gojko Adzic

Hans Samios' Personal Lean-Agile Knowledge Base - https://www.hanssamios.com/dokuwiki/

requirements caused by later change requests. You’ll save time on acceptance and smoke testing.”
Developer’s: “Most functional gaps and inconsistencies in the requirements and specifications will
be flushed out before the development starts. You will be sure that business analysts actually
understand special cases that you want to discuss with them. You will have automated tests as
targets to help you focus the development. It will be easier to share, hand over and take over
code.”
Tester: “You can influence the development process and stop developers from making the same
mistakes over and over. You will have a much better understanding of the domain. You’ll delegate
a lot of dull work to developers, who will collaborate with you on automating the verifications. You
can build in quality from the start by raising concerns about possible problems before the
development starts. You’ll be able to verify business rules with a touch of a button. You will have a
lot more time for exploratory testing. You will be able to build better relationships with developers
and business people and get their respect.”

Want to Know More?

"Bridging the Communication Gap: Specification by Example and Agile Acceptance Testing" by
Gojko Adzic.

Book, Learning, Improvement, AcceptanceCriteria, ConditionsOfSatisfaction, Review, BDD, ATDD

From:
https://www.hanssamios.com/dokuwiki/ - Hans Samios' Personal Lean-Agile Knowledge Base

Permanent link:
https://www.hanssamios.com/dokuwiki/bridging_the_communication_gap_-_specification_by_example_and_agile_acceptance_testing_-_gojko_adzic

Last update: 2020/06/10 12:50

http://www.amazon.com/Bridging-Communication-Gap-Specification-Acceptance-ebook/dp/B008YZ993W?ie=UTF8&redirect=true&ref_=docs-os-doi_0
https://www.hanssamios.com/dokuwiki/tag:book?do=showtag&tag=Book
https://www.hanssamios.com/dokuwiki/tag:learning?do=showtag&tag=Learning
https://www.hanssamios.com/dokuwiki/tag:improvement?do=showtag&tag=Improvement
https://www.hanssamios.com/dokuwiki/tag:acceptancecriteria?do=showtag&tag=AcceptanceCriteria
https://www.hanssamios.com/dokuwiki/tag:conditionsofsatisfaction?do=showtag&tag=ConditionsOfSatisfaction
https://www.hanssamios.com/dokuwiki/tag:review?do=showtag&tag=Review
https://www.hanssamios.com/dokuwiki/tag:bdd?do=showtag&tag=BDD
https://www.hanssamios.com/dokuwiki/tag:atdd?do=showtag&tag=ATDD
https://www.hanssamios.com/dokuwiki/
https://www.hanssamios.com/dokuwiki/bridging_the_communication_gap_-_specification_by_example_and_agile_acceptance_testing_-_gojko_adzic

	Table of Contents
	"Bridging the Communication Gap: Specification by Example and Agile Acceptance Testing" - Gojko Adzic
	Review and Notes
	Want to Know More?

