
Managing Technical Debt in Software Projects
Using Scrum: An Action Research

Frederico Oliveira
Institute of Research Technology

São Paulo, Brazil
frederico.fredy84@gmail.com

Alfredo Goldman
Institute of Mathematics and Statistics,

University of São Paulo
São Paulo, Brazil
gold@ime.usp.br

Viviane Santos
Federal University of Pará

Belém, Brazil
vsantos@ufpa.br

Abstract— Ward Cunningham in his experience report

presented at the OOPSLA'92 conference introduced the
metaphor of technical debt. This metaphor is related to
immature, incomplete or inadequate artifacts in the software
development cycle that cause higher costs and lower quality. A
strategy for the technical debt management is still a challenge
because its definition is not yet part of the software development
process. Carolyn Seaman and Yuepu Guo proposed a technical
debt management framework based on three stages. First, debts
are identified and listed. After that, debts are measured by their
payment efforts and then debts are selected to be considered in
the software development cycle. This study evaluates the
application of this framework in the real context of software
projects adopting Scrum. Action research is conducted in two
companies where their projects have significant technical debt.
We performed three action research cycles based on the three
stages of the framework for both companies. The main
contribution of this paper is to provide real experiences and
improvements for projects using Scrum and that may adopt the
technical debt management framework proposed by Seaman and
Guo. Both teams recognized that the proposed approach is
feasible for being considered in the software development process
after some modifications. Because of projects time constraints
and ease of use, we reduced the use of the proposed metrics to
two: Principal and the Current Amount of Interest. In
consequence, decision-making was benefitted by the early
consideration of the debts that really need to be paid. Instead of
using probabilities to find the interest, these are registered
every time the technical debt occurs. During the first phase, the
debts identification was improved when all Scrum roles
participated, while measurement and decision-making were
improved when the team was responsible for these phases. The
Product Owner role in both companies understood the
importance of Technical Debt monitoring and prioritization
during a development cycle. With these changes, the two teams
mentioned they would remain using the resulting approach.

Keywords- Technical Debt; Scrum; Technical Debt
Management

I. INTRODUCTION
In 1992, Cunningham introduced the concept coined as

“technical debt” (TD) [1]. This concept describes the
consequences that software projects face when they make
trade-offs to implement a lower quality, less complete
solutions in order to meet budget and schedule constraints
imposed by business realities [2].

Many agile teams seem to believe that they are completely
immune to TD. Although iterations offer the opportunity to
reimburse debt in a timely fashion, the opposite often occurs.
Developing and delivering very rapidly, with no time for
proper design or to reflect on the long term and a lack of rigor
or systematic testing (including automated testing), lead some
agile projects into massive amounts of debt very quickly [3].

Technical debt is inevitable. The issue is not on
eliminating debt, but rather managing it [4]. Managing TD
involves tracking it, making reasoned decisions about it, and
preventing its worst effects [5]. It is difficult to define a
strategy to reduce technical debt. In the context of projects
using Scrum, this difficulty in managing the technical debt is
justified by three factors. First, it is not clear who is
responsible for the reduction of technical debt: the Team, the
Product Owner (PO), or the Scrum Master? Second, the PO
often does not understand the need and the benefits of
reducing TD. As a consequence, the PO often does not
consider or allow technical projects/stories in their backlog
and release plan. Third, problems and goals regarding TD are
neither structured nor documented [6].

Regarding TD visualization on a technical level, Rubin [9]
reports three approaches: 1. TD visualization in defect tracking
software; 2. TD visualization in the Product Backlog; 3. TD
visualization in its own backlog.

Carolyn Seaman and Yuepu Guo [7] proposed a TD
management framework that consists of three stages: (1) TD
identification to build a list of debts; (2) TD measurement
through its payment efforts; and (3) TD monitoring to support
decision-making of whether and when to deal with them.

This study aims at evaluating the application of the
mentioned TD management framework [7] through an action
research in the real context of software projects using Scrum.

The action research was conducted in two Brazilian
companies that present TD evidence in their projects. Their
names are in pseudonyms. SoftOne has a benefits
management software project. The software was created in
2002 and has constant product development due to the specific
requests of each client, which can be a city or a state in the
country (Brazil). SoftTwo provides a mission-critical solution
to insurers in general.

This paper has scientific and practical relevance because it
provides real experiences and improvements to the framework
from the perspective of real projects. In the framework, the

2015 Agile Conference

978-1-4673-7153-7/15 $31.00 © 2015 IEEE

DOI 10.1109/Agile.2015.7

50

debt measurement is based on three probabilistic metrics, in
which we reduced their use to two: Principal (estimated
effort to pay the TD) and the Current Amount of Interest
(the actual amount of interest, that is the extra effort that
will be needed in the future if the TD is not paid off at the
moment of its identification). Instead of using probabilities to
find the interest, these are registered every time the TD
occurs. This paper also presents TD visualization approaches
chosen by each project following Rubin’s [9] approaches.
SoftOne chose a junction of the first and the third approaches,
while SoftTwo chose the second approach. In addition, the
responsibilities of Scrum roles are analyzed with the activities
of the framework. For debt identification, all the roles were
relevant. While for measurement and decision-making, the
main Scrum role was the team.

The remainder of this paper is organized as follows.
Section 2 presents related work and the section 3 presents
theoretical background. Section 4 explains the research
approach. Section 5 presents the action research stages:
diagnosing, action planning, action taking, evaluation, and
learning, while Section 6 specifies the research findings of the
action research. Section 7 concludes the paper.

II. RELATED WORK
After searching for studies regarding TD management with

Agile Methods in research databases, such IEEE, ACM and
Springer websites, we have found few studies in this area.
Some studies are specifically related to the TD identification
[8], measurement ([15], [16]) and monitoring [17] to support
decision-making of whether and when to deal with them, but
they do not address the TD management process as a whole.
We have found Seaman and Guo’s framework [7] as the
unique integrated way of TD management found so far.
Following we describe two studies we considered relevant.

Zazworka et al. [8] asked a development team to identify
technical debts items in artifacts from a software project on
which they were working. The participants assess a technical
debt template [7]. Another type of debt was found: Debt
Usability, that was introduced to describe the lack of a
common user interface template. The study reported that it
took an average of 19 minutes per item to identify and
document the technical debts. Subjects agreed that the fields
principal, interest amount, and interest

probability were the most difficult to fill in. We found
only this study directly related to the mentioned framework.

Santos and colleagues [10] reported the experience of an
architecture team with 25 agile teams in supporting technical
decisions regarding technical practices. They proposed the use
of a "technical debt board" with main technical debt categories
to manage and visualize the high-level debt.

III. THEORETICAL BACKGROUND
In this section the approaches are discussed to provide the

theoretical basis for the study. First, the TD management
framework [7] is described. After, we describe three ways of
making technical debt visible at the technical level.

3.1. Technical Debt Management Framework
3.1.1. Technical Debt Identification and Measurement

Seaman and Guo provide a TD template [7]. Each item of
the list represents a task that was left undone, but that runs a
risk of causing future problems if not completed. Each item
includes some attributes, as shown in Table 1.

TABLE I. THE TECHNICAL DEBT TEMPLATE

ID Technical debt identification number
Date Technical debt identification date
Responsible Person who identified the technical debt.
Type Testing (missing test cases, not executed test cases, or

missing test plans), Defect (known latent defects that
have not been fixed), Documentation (missing, outdated,
or incomplete documentation), Design (an imperfection
of the software’s design or architecture negatively
affecting future maintenance) [8].

Location Description of where the debt item is.
Description Justification of why that item needs to be considered.
Estimated
Principal

Work required to pay off the TD item.

Estimated
Interest
Amount

Extra effort needed in the future if the TD item is not paid
off at the moment of its identification.

Estimated
Interest
Probability

Probability of extra work needed, if the TD item is not
paid off in the future.

Initially, when a TD item is created, the three metrics

(Principal, Interest Probability and Interest
Amount, described in Table 1) are assigned values of high,
medium or low. Historical effort data are used to achieve a
more accurate estimation beyond the initial assessment. But
even if the historical data is limited, an expert estimate is
useful in this context [7].

3.1.2. Monitoring Technical Debt

There are two scenarios in which a TD list can be used to
help management decide on various courses of action. The
first is part of the release planning, where a decision must be
made as to whether, how much, and which TD items should be
paid during the upcoming release. The second is ongoing TD
monitoring over time, independent of the release cycle [7].

Regarding the TD selected during the Sprint Planning,
assume that a significant work is planned for component (e.g.
component called X), in the next release. Seaman and Guo [7]
list five steps below:

1. Extract all debts associated with component X.
2. Re-evaluate high/medium/low estimates for these items

based on current plans for the upcoming release.
3. Perform numeric estimates for all items with high

Interest Probability and high Interest

Amount.
4. For each item considered in step 3, compare Cost

(Principal) with Benefit (Interest Probability
* Interest Amount) and eliminate any item for
which the benefit does not outweigh the cost.

5. Add up the estimated Principal for all items left after
step 4. Decide if this cost can be reasonably absorbed
into the next release. If not, use this analysis to justify
the cost to management. If so, can be more debt

51

repayment be put into this release? If so, repeat steps 3-
5 with items with high Interest Probability and
medium Interest Amount, and vice versa, then with
medium for both probability and interest, etc., until no
more debt repayment can be absorbed by the release.

 Regarding continuous TD monitoring, Seaman and Guo [7]
suggest to plot various aggregated measures over time and
observe measures trends.

3.2. Technical Debt Visibility
Rubin [9] describes three ways of making TD visible at the

technical level. Figure 1 illustrates these ways.
First, TD could be logged like defects into an existing

defect-tracking system. Another approach to making technical
debt visible is to create product backlog items that represent
technical debt. A third approach is to create a special TD
backlog that makes individual technical debt items visible.

Figure 1. Ways to make technical debt visible [9].

IV. RESEARCH METHODOLOGY
In this study we used action research as our methodological

approach. This section justifies the choice of action research,
the case selection, data sources and aspects of data analysis.

4.1. Justification of action research
Action research was an appropriate research methodology

for this investigation for some reasons. First, the study matches
a combination of scientific and practical objectives. This
approach merges theory and practice by solving real world
problems through theoretically informed actions in
collaboration between researchers and practitioners [12].
Additionally, little research has yet been carried out about the
mentioned framework [7], which suggests that theory is in an
incipient state. That is why a flexible research approach, such
as action research, would be appropriate [13] [14].

4.2. Case selection
The selection of projects in SoftOne and SoftTwo

followed the guidelines: 1. Ongoing projects with frequent
change requests; 2. Projects using Scrum on project
management; 3. Projects with evidence of TD not managed.

4.2.1. Pension Benefits Management Software

The project selected in the first company (SoftOne) is the
development and maintenance of a social security benefits
software in the public sector. The software is a web
application that consists of modules like registration (civil
servants, dependents, current account, among others), granting
of social security benefits, such as retirement and pension,
payroll processing, electronic document management with

digital certification, retirees and pensioners self-service and
integration with legacy systems.

Nowadays the software is in operation for customers all
over Brazil (states and cities). For this study, a related project
to a specific state was chosen, because it is in constant
software evolution and maintenance. In addition, the first
version in operation was released in 2008, and hence there is a
considerable number of documents and versioned code. The
project started adopting Scrum also in 2008. The team prefers
sprints such as one week. Every sprint begins with the Sprint
Planning Meeting (every Thursday). Daily Scrum Meeting
also occurs in project. Sprint concludes with the Sprint
Review Meeting, in which the team presents its work to the
PO. The Sprint Retrospective Meeting occurs every three
months or when someone wants to change something.

4.2.1. Vehicle Quotations Management Software
The project selected in the second company (SoftTwo)

consists of the development and maintenance of a Vehicle
Quotations Management Software for a major insurance
company in the country. The software offers searches to
customers and vehicles, selection of guarantees and benefits,
and calculation of the insurance considering all these features.
The project officially started in 2013 and from the beginning
already using Scrum. Scrum is similar to the SoftOne except
to the frequency of events.

4.3. Action research cycles
We adapted the five-stage cyclical process model proposed

by Susman and Evered [11]: diagnosing, action planning,
action taking, evaluating, and specified learning. We
performed one diagnosing phase for both companies followed
by three action research cycles containing action planning,
action taking, evaluation and specified learning phases.
Finally, we analyzed the results of each project and proposed
the research results in section 6, Research Findings.

The three cycles were completed according to the three
stages of the framework for both projects. At the beginning of
each cycle, we conducted seminars as seen in Table 2.

TABLE II. ACTION RESEARCH SEMINARS

Event Content
First
seminar
(1-2 hours
Dec/2014)

The metaphor of technical debt [1] was presented to the
research participants, technical and non-technical examples to
facilitate understanding of the concept, the identification of the
debt through the Seaman and Guo’s framework [7] and finally
the three ways of making TD visible at the technical level based
in Rubin [9]. All research participants were invited to identify
the debts for 4 weeks and register them.

Second
seminar
(1-2 hours
Jan/2015)

We informed the research participants on the second stage of
Seaman and Guo’s framework [7], which is responsible for
measuring the TD identified previously. Participants should
measure the debt previously identified. In this seminar we also
present the activities carried out in the last seminar.

Third
seminar
(1-2 hours
Feb/2015)

This seminar presented the 5 steps of the third stage (Seaman
and Guo’s framework [7]) that verifies whether the debt is paid
or not in a sprint. We also presented a graphical example
provided by Seaman and Guo [7] for TD monitoring over time.
Research participants should make the decision to pay or not the
TD previously measured. Finally, we present the activities
carried out in the last seminar.

52

Event Content
Fourth
seminar
(2 hours
Mar/2015)

The seminar was to discuss the final results and propose
improvements in Seaman and Guo’s framework. We also
present the activities carried out in the last seminar.

The seminars were important to inform the theoretical
basis, to discuss issues and to make decisions jointly between
the researchers and research participants.

The first cycle of action research was conducted to identify
technical debt and choose the method for its visualization by
the project team. The second cycle was related to the technical
debt measurement. Finally, the third cycle of action research
was in charge of the technical debt monitoring.

At the end of the last seminar, action research is completed
for both companies after four months working on each project
(November/2014 to March/2015).

4.4. Data sources
We used two types of data sources as the empirical basis

for our investigation: meeting notes obtained from the
seminars and questionnaires. At the end of the cycles, we sent
a questionnaire to the participants by e-mail, so they could
answer questions individually.

 Tables 3 and 4 summarize the individuals who
participated in the action research, their roles in Scrum and
responsibilities in their projects. Individuals were chosen and
allocated by the project managers of the SoftOne and
SoftTwo for this action research.

TABLE III. ACTION RESEARCH PARTICIPANTS - SOFTONE

Number of
participants

Responsibility(ies) in
the project:

Scrum role(s):

1 a) Scrum Master;

b) Technical Leader;

c) Java Developer

a) Scrum Master;

b) Development Team

1 Product Owner Product Owner

7 Java Developer Development Team

3 PL/SQL Developer Development Team

1 Web Designer Development Team

TABLE IV. ACTION RESEARCH PARTICIPANTS - SOFTTWO

Number of
participants

Responsibility(ies) in
the project:

Scrum role(s):

1 a) Scrum Master;

b) Technical Leader

a) Scrum Master;

b) Development Team

1 Product Owner Product Owner

1 Architect Java Development Team

The Scrum Master role in SoftOne is conducted by the

first co-author of this study. He is working for six years in the
project and has a total of eight years working with the Pension
Benefits Management Software. Furthermore, the first co-
author has the functions of Scrum Master, Development
Leader and Java Developer, as shown in the first row of Table
3. As the first co-author has a leadership position in the project

where the research was conducted, this may result in research
bias, as some suggestions were given and accepted by the
research participants of SoftOne.

4.5. Data analysis
Firstly, we made individual analysis of each questionnaire

answer and seminar notes. Then, we analyzed statements on
issues of interest to the research or on providing subsidies for
a new issue. At this stage we observed whether certain ideas
appear recurrently and whether there were contradictions.

Secondly, we compared the statements contained in the
various documents to group them in “codes”. The codes were
organized into categories according to the ideas contained in
it. The same code could be applied to more than one category,
whether contains more than one idea. While comparing the
responses of the research participants for each category,
recurring ideas or new categories that allowed further analysis
of agreement and disagreement were identified. We also
enumerated the amount of times a word or ideas were cited.
Another analysis was performed to identify favorable
positions, neutral or opposed to a particular activity. We
carried out this analysis by searching words, such as “like”,
“indifferent”, “found it annoying”, etc.

V. ACTION RESEARCH
This section explains the three action research cycles and

the phases mentioned in subsection 4.3.

5.1. Diagnosing

5.1.1. SoftOne

The Pension Benefits Management Software was
conceived in 2002. Since then, many analysts and
programmers worked on it. Many of these individuals have
not had the concern, for example, to keep the original
architecture of the software or create tests that enable the safe
maintenance of the software all over these years.

This scenario became even worse when, by the end of
2014, the project team doubled in size (15 to 30 people). The
quality of the software for the customer became a key issue.
So the project manager along with the team began to worry
about the technical debts, in particular how to reconcile the
ordinary functionalities’ development from the Product
Backlog with the debts found in the project.

5.1.2. SoftTwo

In November 2014, the first co-author of this study
participated in meetings with a director of the company and
he was concerned about the rapid and disorganized inclusion
of features in the software as a result of pressure from their
customers. At these meetings we presented the concept of
technical debt and soon after we began meetings with part of
the team. The problem was clearly mentioned by the director.
He said: “Consider managing to clean up code in parallel
with the features to be developed”.

It was diagnosed that the debts were already being listed
by the team, but they were not aware that these activities were
related to technical debt.

53

5.1.3. On both companies
For both projects, the main problem of managing TD may

be divided into the following parts: debt identification and
visualization, measurement effort for payment and decision
making of when and which items should be payed off.

5.2. First Cycle: Identify technical debts and choose a
method for visualizing it by the project team
5.2.1. Action Planning and Action Taking

For both companies we were asked to use the tools
available in the project for the technical debt management.

In SoftOne the project team uses the Trello tool for online
visual management of the Kanban board. The Kanban board
for Pension Benefits Management Software contains the
Product Backlog; the Sprint Backlog; ongoing activities;
activities to be tested; completed, tested and approved (with
the customer) activities; completed activities that are in
operation; and activities that have some impediments to its
implementation. Besides Trello tool, the team uses Vtiger tool
to control demands, such as bug fixing or implementation of
new features. Research participants selected the first and the
third approaches, as illustrated in Figure 1, to view the
technical debt in the project. In the first approach, the team
used the Vtiger as their debt registration tool. In the third
approach, they used the Trello as a support tool to create the
Technical Debt Backlog. A detailed description of each debt
registered in the Technical Debt Backlog is also registered on
an item classified as technical debt in Vtiger.

The SoftTwo project team uses Jira as a tool for managing
activities and tasks, as well as for monitoring and reporting
defects (bugs). Some debts were preliminarily registered in
Jira, but they were not being classified as such. The research
participants implemented a new type of classification in Jira
for TD. Thus, they adopted the second approach (Figure 1).

The seminar introduced the discussion about what Scrum
role is responsible for debt identification. One of the SoftOne
participants mentioned the following statement about the
Scrum role for debt identification:

“The role would be the (Scrum) team. Everyone involved
directly or indirectly in the project could find technical debt.
Example: perhaps a business analyst could identify a fault in
any process that possibly the developer would not find.”

All research participants (SoftOne and SoftTwo) were
invited to identify the debts for 4 weeks and register them in
the chosen visualization form. For each debt found they were
required to complete the first 6 rows of Table 1. During the
identification phase, in addition to the existing technical debts’
type according to the framework, new types could be created
by the research participants. Finally, they registered the time
spent in completing the first 6 rows for each debt found.

5.2.2. Evaluating and Specified Learning
5.2.2.1. SoftOne

After 4 weeks, among the 13 research participants, only
4 did not identify at least one technical debt. A total of 46
technical debts were identified and placed in the form of

visualization discussed in the Action Planning. Figure 2
illustrates a debt filled up in the chosen visualization form.

Figure 2. A debt filled up in Trello tool (first 6 rows of Table 1).

The research participants did not identify similar debts
more than once, thus justifying the importance of the fact that
all roles of the team have worked in the identification. Figure
3 shows the debt percentage obtained by each Scrum role.

The results depicted in Figure 3 are consistent with the
responses obtained from the question “Who would be
responsible for identifying the Technical Debt in your project
in an agile management environment using Scrum?”, which
was in the questionnaire answered at the end. The percentage
of the responses is shown in Figure 4.

Figure 3. Debt found on the project by Scrum roles.

Figure 4. Scrum role responsible for identifying TD in the
project.

New types of TD were created: Usability, Performance
and Infrastructure. Table 5 shows an example of each of
these. Figure 5 shows the percentage by type. There were no
debts on documentation and testing, because the people
responsible for these activities were not participating in this
research.

TABLE V. EXAMPLES OF NEW DEBT TYPES IN THE PROJECT

Usability Debt Compatibility security module with other browsers
(Chrome).

Performance Debt Make memory profile test in Weblogic to check for
memory bottleneck in the retirement calculation.

Infrastructure
Debt

Deploy Jenkins tool to control the build management
continuous integration.

54

Figure 5. Technical Debt found in the project by type

Research participants put the debts identified in the chosen
visualization and also completed the first 6 rows of Table 1 for
each of them. The average time spent was 3 minutes.

One of the research participants in SoftOne suggested
including 2 items: "Impact" and "Possible Solution". The first
item was not accepted by the other participants, since we
could put this information in the Description field. The
"Possible Solution" field was also accepted but not required,
because sometimes the TD solution it is not known for sure.

5.2.2.2. SoftTwo

In the beginning of the research, the list of TD in SoftTwo
had a total of 16 items listed in Jira tool, but there was no
evidence of who identified the debts. The evidence of the
identified and registered debts is illustrated in Figure 6.

Figure 6. Technical debts in the Jira tool.

The same question previously made in SoftOne to identify
who is responsible for identifying the debt on the project, was
also made in SoftTwo. The result is shown in Figure 7.

Figure 7. Scrum role responsible for identifying TD in the project.

New types of debt were not created because all 16 items
were classified in an existing type of the framework. The
technical debts found were divided as illustrated in Figure 8.

In SoftTwo, research participants did not measure the time
taken to fill up the first 6 rows of Table 1 for each technical
debt found. The measurement was not employed because they
did not remember to do this activity in the identification stage.

Figure 8. Technical Debt found in the project by type

Research participants emphasized the importance of filling
up the first 6 rows of Table 1 for each identified debt. All
agreed that the TD were only registered in the tool (before of
the research), but had no important information like type,
location and description of the debt.

5.3. Second Cycle: Technical Debt measurement
5.3.1. Action Planning and Action Taking

The participants of both companies chose a set of debts
from the previous stage for providing their measurement. In
SoftOne, participants decided that 25% of the identified debts
should be measured. They set a rule that debts would be
chosen according to the importance in their project. The
estimates were established through pairs: the person who
identified the debt would estimate with another person who
holds knowledge about the debt issue.

In SoftTwo, participants chose a random number of TD to
estimate. For each debt, one person was responsible for its
measurement.

According to Seaman and Guo’s framework, the three
metrics (Principal, Interest Probability and
Interest Amount) are assigned values of “high”,
“medium”, or “low”. This scale of values is subjective and the
research participants of both companies have defined a
rationale based on the characteristics of their projects, as seen
in the Table 6 for SoftOne and Table 7 for SoftTwo.

As the SoftOne sprint is 40 hours, participants decided
that the team could not spend more than 8 hours paying off
TD. In SoftTwo, they defined complexity points and efforts.

During two weeks, the selected debts were estimated and
the values were registered as seen in the last 3 rows of Table 1
in the form of visualization of each project. Finally, the
research participants recorded the time spent in completing the
last 3 rows of the Table 1 for each estimated debt. In the final
questionnaire we requested them to identify which fields from
Table 1 the participants found more difficulty to fill up.

55

TABLE VI. VALUES SCALE - SOFTONE

 High Medium Low
Principal Effort to address

debt greater than 8
hours.

Effort to
address debt
between 4 and 8
hours.

Effort to
address the debt
below 4 hours.

Interest
Probability

Debt has happened
more than one
time. The
probability is 80%.

Debt has
happened at
least one time.
The probability
is 50%.

Debt has not
occurred yet.
The probability
is 20%.

Interest
Amount

Extra effort greater
than 8 hours.

Extra effort
between 4 and 8
hours.

Extra effort less
than 4 hours.

TABLE VII. VALUES SCALE - SOFTTWO

Complexity Points Effort (hours)
1 8
2 16
3 24
4 32
5 40
6 48
7 56
8 64
9 72

10 80

The seminar introduced the discussion about what Scrum

role is responsible for debt measurement. The Scrum roles that
participants chose for debt measurement are discussed further.

5.3.2. Evaluating and Specified Learning
5.3.2.1. SoftOne

Among the 46 debts found, 25% of these were estimated.
In other words, 12 technical debts were selected by
importance by the research participants.

The measurement was performed with respect to the
Principal, Probability and Estimated Interest

Amount. The average time to fill up the metrics was 10
minutes. Figure 9 illustrates the debt metrics related to Figure
2, which they were filled up according to Table 6.

Figure 9. A debt filled up in Trello tool (last 3 rows of Table 1).

Initially, the average time for completing the first 6 lines
was 3 minutes while the average time for completing the last
three rows of Table 1 was 10 minutes. This result is consistent
with the responses obtained from the question “What level of
difficulty (LOW or HIGH) did you find to fill up the fields in
Table 1 for the debts selected?”, which was in the final
questionnaire. The percentage is illustrated in Figure 10 for
each field with high difficulty.

The measurement was obtained through pairs. The PO
noticed difficulties in measuring debts. With the consensus of
the research participants, this role did not participate in this
task. This is consistent with the responses obtained from the
question “Who would be responsible for TD measurement in
your project in an agile management environment using

Scrum?”, which was in the final questionnaire. The summary
of the responses is shown in Figure 11.

Most of the comments made by research participants are
related to the process of abstraction to estimate the values of
the measures. One of the participants mentioned the following
statement:

“I believe that the greatest difficulty has been to stipulate the
estimated interest amount. It's hard to abstract what would be
the extra effort especially for cases that have not yet occurred.”

Figure 10. Level of difficulty in filling up the fields.

Figure 11. Scrum role responsible for TD measurement in the
project.

Among the 12 debts measured, only one was considered
a high Interest Probability and high Estimated
Amount. This is exactly the infrastructure debt presented in
Table V, thus indicating a considerable impact on the project
if not resolved.

5.3.2.2. SoftTwo

Among the 16 debts found, 5 of these were estimated by
importance. The average for filling up the last 3 lines of
Table 1 for 6 debts selected was 8 minutes. Figure 12
illustrates the 3 fields filled up to the 5 selected debts.

Figure 12. Technical debts filled up in a spreadsheet tool (last 3
rows of the Table 1).

According to the answers of the questionnaire applied at
the end of the study, fields from Table 1 that the research
participants found difficult to fill up are shown in Figure 13.
Most research participants in SoftTwo also agreed that the

56

development team should perform the technical debt
measurement, as shown in Figure 14.

Figure 13. Level of difficulty in filling up the fields.

Figure 14. Scrum role responsible for technical debt measurement
in the project.

Most of the comments made by research participants are
also related to the difficulty in measuring. One of the
participants mentioned the following statement:

“Let us consider a defect debt in a component. Calculate the
estimated interest amount and estimated interest probability is
something really difficult because you need to check a large
volume history, study the errors already found in this
component and thus to measure the probability that debt will
occur in the component”.

5.4. Third Cycle: Monitoring Technical Debt
5.4.1. Action Planning and Action Taking

The research participants in SoftOne and also in SoftTwo
decided that all debts previously chosen to be measured would
also be used to verify whether the Benefit (Interest
Probability multiplied by Interest Amount) exceeds the
Principal. In SoftOne this activity was executed by the
pair that measured the TD item. While in SoftTwo this
activity was also executed by the person who measured the
debt previously. Thus, for each debt measurement, it is known
whether it is time to pay or not.

After calculating the Benefit and the Principal, we
agreed with the research participants to adopt the 5 steps
suggested by the framework [7] in their next Sprint Planning
Meeting. These steps help in selecting the items to be paid.

To monitor TD in projects, participants decided to use a
chart containing the weighted total principal (TP) and
the weighted total interest (TI) for 4 weeks. TP is
calculated by summing up over the entire list (set 3 points for
high, 2 for medium, 1 for low) and TI (add points for
probability and amount) [7].

5.4.2. Evaluating and Specified Learning

All debts selected in SoftOne and SoftTwo were verified
on whether the Interest exceeded the Principal. In

SoftOne, there was one technical debt that the Benefit already
exceeded the Principal, which can be seen in Figure 15.

Figure 15. Technical debt with Interest exceeding the
Principal (SoftOne).

In SoftTwo, from 5 selected and estimated debts, 3 of
them had the value of Interest above the Principal in
February. In March there were 4 items as shown in Figure 16.

Figure 16. Technical debt which Interest exceeded the
Principal (SoftTwo).

During the Sprint Planning Meeting, the Product Owner
notifies the initial goal to the team [9]. So the team selects the
number of items in the Product Backlog for the Sprint.
Following this criterion, the team (Scrum) prioritizes the
technical debt to be payed off.

In the planning meeting of each of the projects
participating in the research, the Development Team used the
5 steps of Seaman and Guo’s framework [7] to prioritize debts
for the sprint. As mentioned in the Action Planning, the
research participants (SoftOne team and PO) decided that the
team could spend more than 8 hours paying technical debt. PO
allowed the TD and he mentioned the following statement:

“We cannot pay all the debt during a sprint. I am aware that
we have debt and that we treat. Thus, we allocate an amount
of hours to pay the most important debts”.

After the first meeting, both SoftOne and SoftTwo did not
prioritize any item of technical debt. In SoftOne, the measured
items were not linked to features in the sprint. In SoftTwo,
although there were items that should be analyzed, the team
chose to continue paying Interest for lack of time during
the next sprint.

SoftTwo monitored their TD for 4 weeks. Figure 17
illustrates a debt example where in the third week the
Interest exceeded the Principal. This company chose to
plot a chart, such as of the Figure 17, for each measured debt,
which was not suggested by the framework.

Figure 17. Monitoring a technical debt item (SoftTwo)

The debt monitoring in both projects was carried out by
people who measured it previously. This is consistent with the
responses obtained from the question “Who would be
responsible for monitoring the Technical Debt in your project

57

in an agile management environment using Scrum?”, which
was in the final questionnaire. The result of the responses is
shown in Figure 18 and is similar for both companies.

Figure 18. Scrum role responsible for technical debt monitoring.

Research participants of SoftOne and SoftTwo mentioned
that monitoring and updating the measures must be done
constantly. However, this is not an easy task. One of the
participants mentioned the following statement:

“Monitoring is difficult to be manual and require some time. As
there are numerous activities in the project, have something
that was automated would help a lot.”

VI. DISCUSSION – RESEARCH FINDINGS
 In this section, we consolidate the results from both projects
and discuss the theoretical and practical implications of them.

6.1. Scrum roles for identification, measurement and
decision making

Scrum roles for identification, measurement and decision
making related to technical debt were similar for both
companies (SoftOne and SoftTwo).

According to our research participants, all team members
should identify technical debt. This is justified by debts
encountered by all the roles in both studied projects.

On the other hand, our research participants suggest that
the development team should perform debt measurement,
since this role is responsible for the technical tasks of the
project and thus appropriate to derive the estimates.

The development team should prioritize the technical debt,
because it is the role that can better assess what will be
completed in relation to the target. This role also carries out
debt monitoring during the project. In both companies, the
research participants decided that the person responsible for
the debt would register the time for debt identification. The
person would also be responsible for verifying whether the
Interest exceeded the Principal. So, (s)he would be in
charge of making the monitoring chart, as shown in Figure 14.

6.2. Identification of Technical Debt

In Zazworka et al. research [8], the participants used tools
for automatic identification of defect debts. However, we
observed that it is still necessary to involve humans in the
identification process, because these tools cannot help in
identifying many other types of debt. Thus, the research
participants did not use any software to identify the debts.

Most reported debt types were related to Design and
Defects. This is justified because most of the research
participants were developers and software architects. New
types were created in SoftOne because some debts are not

classified among those present in the framework. Thus, new
types were created for a group of debts in similar cases. This
strategy may facilitate the creation of actions to try to avoid
future debts of these types with more evidence.

The average time for completing the first 6 rows of Table 1
of debts found was made within a reasonable time from the
point of view of research participants (three minutes in
SoftOne). At SoftTwo, they also agreed that identification
time would be similar to the time presented by SoftOne.

6.3. Technical Debt measurement

The three metrics (Estimated Principal, Interest
Estimated Amount, Interest Estimated

Probability) were the fields that research participants had
more difficulty for filling up, due to be a probabilistic field,
especially when there is no historical data. This fact is the
same found in Zazworka et al. research [8]. The average time
spent to complete the last 3 lines of Table 1 for selected debts
was 10 minutes in SoftOne, i.e., three times higher than the
average time to fill up the first 6 lines in Table 1. The average
time spent in SoftTwo was similar (about 8 minutes).

The total average time to fill up in Table 1 was similar to
the found in the mentioned research [8], which was 19
minutes. In the case of SoftOne, it was 13 minutes. In
SoftOne, a practice used was the debt measurement employed
by pairs. As the measures are statistical probabilities, the
discussion in pairs to find out the values for the three metrics
was valid and presented genuine estimates. However, the
measures did not eliminate the difficulty in finding the values.

Thus, with this difficulty in estimating 3 metrics, we
agreed to measure the debt by only 2 items: Principal and
Current Amount of Interest. Every debt encountered
during the development cycle, the team must register it and
estimate its Principal. They also register the value of
accumulated interest to date. Each time the debt occurs, the
Current Amount of Interest must be updated.

We asked the research participants of SoftOne to identify
new debts and fill up them with the first 7 rows of Table 1 and
Current Amount of Interest. For 2 weeks, 5 debts
were identified and the average time to fill up these fields was
6 minutes, or 46% of time spent above (6 divided by 13). In
SoftTwo this new approach has not yet been put into practice.

6.4. Monitoring Technical Debt

As research participants suggested measuring the debt by
only 2 items (Principal and Current Amount of

Interest), the 5 steps (monitoring TD) covered in the
framework were arranged for the following:
1. Extract all TD items associated with the work to be done.
2. Re-evaluate Principal numeric estimates for these

items based on current plans for the upcoming release.
3. For each item considered in step 1, compare Cost

(Principal) with Benefit (Current Amount of

Interest) and eliminate any item for which the benefit
does not outweigh the cost.

4. Decide if this cost can be absorbed into the next release.
If not, use this analysis to justify the cost to management.

58

Both companies plan to adopt these steps in their next
sprint. The TD monitoring was held by the people responsible
for each debt measured. The goal was to alert the team when
the Interest would exceed the Principal in a debt. The
difficulty exposed by the research participants was the lack of
tools that make the integration between the TD measurements
and their tracking chart. These management tools that assist in
TD measuring and monitoring debt are not considered in
Seaman and Guo’s framework [7].

6.5. Limitations

Even conducting three action research (AR) cycles with
important practical feedback, this study is still not conclusive.
We need to conduct more AR cycles to assure validity of the
proposed changes to the presented approach within the context
of the participating teams.

Some activities in SoftOne were not performed in
SoftTwo, such as the measurement of the average time of
completing the first 6 rows of Table 1 for debt identification.

For both projects, project managers selected the roles and
tools participating in the research. We did not consider roles,
such as testers, infrastructure analysts, and project manager.

The new approach to TD prioritization (4 steps seen in
subsection 6.4) has not been put into practice in SoftOne and
SoftTwo. This will occur in the next sprints.

The first co-author of this study actively participates in the
research, as he is part of the SoftOne development team. In
this context, the co-author participated in the identification,
measurement and prioritization of debt in the project together
with the other participants. His leadership position in the
project may result in research bias, as some suggestions were
given and accepted by the research participants of SoftOne
but not of SoftTwo.

In SoftTwo, in addition to the seminars, the doubts were
discussed by means of telephone calls and e-mails. It was
noted that the planned activities were not carried out
constantly during the agreed period. This occurred because the
project was with several other ongoing activities. In addition,
the researchers were not daily in the project.

VII. CONCLUSIONS
This paper describes a practical evaluation of the Seaman

and Guo´s TD management framework, through an action
research in the real context of software projects using Scrum.

In a Scrum project, most TD management activities should
be accomplished by the development team, since this role has
the technical perspective of the project. Otherwise, in TD
identification, all can contribute during the project. Each
project followed Rubin’s [9] approaches for TD visualization.

About the framework, the difficulty concerned TD
measurement. Thus, we used only two metrics that correspond
to the actual values (not the probability) of debt in the project.
With this major change, the two teams mentioned they would
remain using the resulting approach. A barrier that may hinder
the use is on the tools. It is important to use tools to ease TD
measuring and monitoring.

As a further work, TD measurement based on two metrics
will be used in SoftTwo. Besides, the new approach to
prioritization of debt (4 steps seen in subsection 6.4) has not
been put into practice in SoftOne and SoftTwo, which will be
put into practice in the next sprints.

The Seaman and Guo’s framework is an important first
step in the TD management, but with the changes proposed in
the TD measurement, the framework tends to greater
acceptance by considering actual values.

Finally, the research participants in the Product Owner role
understood the importance of technical debts monitoring and
prioritize them during a software development cycle.

REFERENCES

[1] Cunningham, W. 1992. The WyCash Portfolio Management System. In
Addendum to the proceedings on Object oriented programming systems,
languages, and applications. Pp-29-30.

[2] Lim, E. Technical Debt: What Software Practitioners Have to Say.
Thesis submitted in partial fulfillment of the requirements for the degree
of master of applied science in The Faculty of Graduate Studies. The
University of British Columbia. 2012.

[3] Kruchten, P., Nord, R. L. and Ozkaya, I. Technical Debt: From
Metaphor to Theory and Practice, IEEE Softw., vol. 29, no. 6, pp. 18–
21, 2012.

[4] Allman, E. Managing technica debt.. Magazine Communications of the
ACM, vol. 55, no.5, pp.50-55, May. 2012.

[5] Lim, E., Taksande, N. and Seaman, C. “A Balancing Act: What
Software Practitioners Have to Say about Technical Debt,” IEEE
Software, vol. 29, no. 6, pp. 22–27, Nov. 2012.

[6] Buch, B. “Effective Steps to reduce technical debt: An agile approach.
2011. http://www.codovation.com/2012/06/effective-steps-to-reduce-
technical-debt-an-agile-approach/

[7] Seaman, C., and Guo, Y. 2011. Measuring and Monitoring Technical
Debt. In Advances in Computers, Vol.82,pp.25-46.

[8] Zazworka, N., Spínola, R. O., Vetro’, A., Shull, F. and Seaman C. A
case study on effectively identifying technical debt. Proceedings of the
17th International Conference on Evaluation and Assessment in
Software Engineering. Pp. 42-47.

[9] Rubin, K. S. Essential Scrum. A Practical Guide To The Most Popular
Agile Process. Addison-Wesley, 2013. 498p.

[10] Santos, P. S. M, Varella, A., Dantas, C. R., Borges, D. B. Visualizing
and Managing Technical Debt in Agile Development: An Experience
Report. Agile Processes in Software Engineering and Extreme
Programming Lecture Notes in Business Information Processing, v.149,
p.121-134, 2013.

[11] Susman, G.I., Evered, R.D. An assessment of the scientific merits of
action research, Administrative Science Quarterly 23 (1978) 582–603.

[12] Greenwood , D.J., Levin, M. Introduction to Action Research: Social
Research for Social Change, SAGE Publications, 2007.

[13] Edmondson, A.C., McManus, S.E. Methodological fit in management
field research, Academy of Management Review 32 (2007) 1155–1179.

[14] Kampenes, V.B., Anda, B., Dybå, T. Flexibility in research design in
empirical software engineering, in: Evaluation and Assessment in
Software Engineering (EASE 2008), BCS, University of Bari, 2008.

[15] Nugroho, A., Visser, J., Kuipers, T. An empirical model of technical
debt and interest. Proceedings of the 2nd Workshop on Managing
Technical Debt. Pp-1-8.

[16] Curtis, B., Sappidi, J., Szynkarski, A. Estimating the size, cost, and types
of technical debt. Proceedings of the Third International Workshop on
Managing Technical Debt. Pp-49-53.

[17] Seaman, C., Guo, Y., Izurieta, C., Cai, Y., Zazworka, N., Shull, F.,
Vetrò, A. Using technical debt data in decision making: potential
decision approaches. Proceedings of the Third International Workshop
on Managing Technical Debt. Pp-45-48.

59

