Forecasting using Data

Introduction to probabilistic forecasting
Using data rather than estimates
Every spreadsheet and exercise worksheet is here:

Bit.ly/SimResources (gitHub)

or FocusedObjective.com (see "free stuff")
or @t_magennis (I've post links here in my twitter feed)
Or email me: troy.magennis@focusedobjective.com

Every spreadsheet and exercise worksheet is here:

Bit.ly/SimResources (gitHub)

or FocusedObjective.com (free stuff)

or @t_magennis (I've post links here)
|Understanding probability - Exercises

Q1. How many different possible values are there for a standard six-sided dice?

A:

Q2. How many values of a six sided dice are less than 4 ? Tip: Circle the values that are less than 4.

A:

Q3. What is the probability of rolling a value less than 4 on a standard six side dice? Tip: Count the number of "right" values and divide by the total number.

$$
p=\frac{\text { Number of "right" values }}{\text { Total possible values }}
$$

$$
p=\frac{\text { Number of "right" values }}{\text { Total possible values }}
$$

$$
p=\frac{\text { Number of "right" values }}{6}
$$

$$
p=\frac{3}{6} \quad p=\frac{1}{2} \quad p=0.5
$$

Sampling

A way to use the data we do have to make predictions \& forecasts
Q. How quickly do we discover a range of values by sampling?

Why? Because as we get story count, story size, velocity, Throughput, cycletime. How confident should we be of having found the full range values.
Q. On average, what is the chance of the $4^{\text {th }}$ sample being between the

Q. On average, what is the chance of the $4^{\text {th }}$ sample being between the

Actual
Maximum

Actual range seen after 3 random samples?
(no duplicates, uniform distribution)
25% chance higher than previous highest seen

25% chance lower than previous lowest seen
Q. On average, what is the chance of the $4^{\text {th }}$ sample being between the

Actual
Maximum
 range seen after 3 random samples?
(no duplicates, uniform distribution)
25% chance higher than previous highest seen

A. 50%
$\%=(n-1) /(n+1)$
$\%=(3-1) /(3+1)$
$\%=0.5$
25% chance lower than previous lowest seen

Actual
Q. On average, what is the chance of the $12^{\text {th }}$ sample being between the

Actual
Maximum
 range seen after 11 random samples?
(no duplicates, uniform distribution)
8.5\% chance higher than previous highest seen

A. 83%
$\%=(n-1) /(n+1)$
$\%=(11-1) /(11+1)$
$\%=0.833$

Minimum

Predicted Expected

- " n " = number of prior samples
- A is the \% chance next sample in previous range

n	$(n-1) /(n+1)$	n	$(n-1) /(n+1)$
2	33%	16	88%
3	50%	17	89%
4	60%	18	89%
5	67%	19	90%
6	71%	20	90%
7	75%	21	91%
8	78%	22	91%
9	80%	23	92%
10	82%	24	92%
11	83%	25	92%
12	85%	26	93%
13	86%	27	93%
14	87%	28	93%
15	88%	29	93%
		30	94%

Experiment

From a *known* range of values, take samples at random and see how fast we can determine what the full range *might* be.

Compare two ways -

1. From the computed probability formula
2. By doubling the average (double what you are told)

Prediction Intervals Exercise

To find how many samples it takes to find the lower and upper bounds of a sample set on average? This exercise simulates finding the upper and lower boundary of a sequential range by sampling the result of dice rolls.

The process

1. Roll Dice: Create a random number with a range of 1 to 100 . Options:
a. A random number generator app on your phone (Randomizers)
b. Use three rolls of a six-sided dice (see next page for chart)
c. Sum two 10 sided dice ($00-90$ by 10 's) and a traditional ($0-9$)
2. Repeat: Repeat 20 times and record the results in the table below.
3. Examine Results: Look at the range between the lowest rolled and highest rolled. Compare against expected.

Questions and discussion topics

1. What probability distribution is a single roll?
2. What guarantee do I have that I have found the range expected?
3. What happens if the data is a Normal (bell curve) distribution?
4. What happens if the data is left or right skewed?
3×6 Sided Dice

2×10 Sided Dice

99

Note: Rolling a 00 and $0=100$

Results table
Record each roll and calculate the ranges seen so far after each roll. Are you ahead or behind expected?

n	This Roll	Lowest So Far	Highest So Far	Range So Far $=$ Highest-Lowest	Expected Range $\frac{(n-1)}{(n+1)} \times 100$	Average So Far (expected 50)
$\mathbf{1}$					0	
2					$\mathbf{3 3 . 3}$	

Exercises

- Dice rolling exercise
- Roll samples from Dice
- Values from 0 to 99
- How many rolls before you see: < 10 AND > 90 values

Come to the front when completed. Compare with expected.
How close to 9 samples is range of 80 found? (80% range, 10% above?)

Group	\# samples range >80	\# samples until 2xavg >80
1		
2		
3		
4		
5		
6		
7		
2		

oup	$\begin{aligned} & \text { \# samples > } \\ & \text { range > } 80 \end{aligned}$	$\begin{array}{\|l} \hline \text { \# samples until } \\ 2 \times \mathrm{avg}>80 \end{array}$
8		
9		
10		
11		
12		
13		
14		

$\mathrm{A}^{\text {2 }} \leqslant \mathrm{A}$ http://bit.ly/Throughput

1	Completed Date \quad -	Start Date (optional) \quad -	Type (optional)	- Ic
2	1/21/15	1/14/15		
3	1/26/15	1/14/15	Story	
4	1/26/15	1/14/15	Defect	
5	1/26/15	1/21/15	Story	
6	1/26/15	1/22/15	Story	
7	1/29/15	1/23/15	Story	
8	2/2/15	1/23/15	Story	
9	2/2/15	1/20/15	Defect	
10	2/2/15	1/20/15	Defect	
11	2/4/15	1/20/15		
12	2/4/15	1/26/15		
13	2/4/15	1/23/15		
14	2/4/15	1/22/15		

17 charts so far...
Throughput (planned \& un-planned)
Throughput Histogram(s)
Cycle Time (planned \& un-planed)
Cycle Time Histogram(s)
Work In Process
Cumulative Flow
Arrival vs Departure Rate
Un-planned work Percentage
Cycle Time Distribution Fitting

Average: $\$ 80,000$.

MATH with BAD DRAwINGS

Median

So, why should I invest with you?

Well, not to brag, but my fund has a median

On average (or median), Arithmetic fails....

1 to 6 days + 1 to $6+1$ to $6+1$ to $6+1$ to 6 $=5$ to 30 days

3.5 days $+3.5+3.5+3.5+3.5=17.5$ days

Siri, Add 1 to 6 five times.

Cortana, Add 1 to 6 five times.

(sometime later)
Alexa, Buy me some Vodka....

Probabilistic Forecasting combines many uncertain inputs to find many possible outcomes, and what outcomes are more likely than others

Time to Complete Backlog

Seeing "How Likely"

Sampling with replacement

Trial 1 Trial 2 Trial 100

	1		35
	4	19	
	7	5	
	5	13	
Sum:	$\underline{\mathbf{5 1}}$	$\underline{\mathbf{2 8}}$	\ldots

Q. Could I make a simple forecast tool that worked?

Without macros or add-ins!

http://bit.ly/ThroughputForecast

http://bit.ly/ThroughputForecast

Forecast Completion Date

1. Start Date

4/1/15

2. How many stories are remaining to be completed?
(enter the range estimate of stories. Tip: start wide and narrow as certainty increases)
Low guess
20
Highest guess
3. Stories are often split before and whilst being worked on. Estimate the split rate low and high bounds.
(often the throughput in the backlog is pre-split, but captured throughput post-split. Adjust for this here)

4. Throughput. How many completed stories per week or sprint do you estimate low and high bounds?

Throughput estimate/samples are per	Week	7 days

Use historical throughput data OR enter a low and high estimate below. Use:
Estimate

Low guess
1
Highest guess 5

[^0]
http://bit.ly/ThroughputForecast

http://bit.ly/ThroughputForecast
Results

Experiment

From a set of *prior* throughput samples, compute the completion rate(s) for the next 6 (six) weeks.

Process -

1. Repetitively sample prior throughput in sets of 6
2.Compute how many trials complete at least 10, 20, 30, 40, 50,60 items in 6 weeks

First dice throw

	-		\bullet°	\bullet	$\bullet \cdot 0$: $:$
\bullet	16	3	10	6	19	11
	17	17	15	9	11	8
$\bullet^{\circ}{ }^{\circ}$	5	13	5	7	8	6
	10	10	8	5	5	7
10°	$\begin{array}{\|c\|} \hline \text { Roll } \\ \text { again } \end{array}$	Roll again	$\begin{gathered} \text { Roll } \\ \text { again } \end{gathered}$	$\begin{gathered} \text { Roll } \\ \text { again } \end{gathered}$	$\begin{gathered} \text { Roll } \\ \text { again } \end{gathered}$	$\begin{gathered} \text { Roll } \\ \text { again } \end{gathered}$
\square	Roll again					

Second dice throw

24 Throughput (or velocity)

Samples Randomly picked by throwing a dice

1. Throw a 6-sided dice. Pick the column.
2. Throw a six-sided dice and pick the row
3. If it doesn't say "Roll again" this is your throughput sample.

Fill in the numbers for Trials 1, 2 and 3 . I've done Trials 4 to 11 so you don't want to kill me!

Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	1
			7	11	7	
			19	7	10	
			6	5	5	
			6	19	5	
			5	7	10	
			5	7	19	

Exercise - Throughput Forecast Monte Carlo Worksheet

Aim: To estimate the number of stories that will be completed by a team for a six (6) week timespan using historical weekly throughput samples for that team. To understand the probability of achieving those estimates. Process:

1. Shuffle the 24 throughput cards or dice (whichever method you choose)
2. Pick a card at random or throw dice and record sample in the table below
3. Return the card to the deck and reshuffle ("sample with replacement")

We randomly sampled trials 4 to 12 for you to save tirne.
4. Repeat until all squares are filled

Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10	Trial 11
			7	11	7	5	17	5	10	16
			19	7	10	5	13	13	5	7
			6	5	5	3	5	16	6	5
			6	19	5	3	5	3	6	3
			5	7	10	5	6	8	8	6
			5	7	19	10	16	8	10	16

5. Sum of all samples for each trial by column (ypger) $/$ Nearest "tens" grouping rounded down (lower)

			48	56	56	31	62	53	45	53
			$40+$	$50+$	$50+$	$30+$	$60+$	$50+$	$40+$	$50+$

6. Sum all trials (a):

Average all trials (a/11):
Actual data average 6 week throughput $=\mathbf{5 7 . 7 5}$. How close was your average?
7. Probabilities of achieving at least n stories for a six-week timespan

Six Week Throughput	Count trial sum groups at least 30,40, 50, etc. stories	(Count / 11) Likelihood
At least $\mathbf{3 0}$ stories		
At least 40 stories		

Come to the front and give me your Likelihood of 60, 70 and 80 stories

coup			coss	Goup		¢	
1				8			
2				9			
3				10			
4				11			
5				12			
6				13			
7				14			

Every spreadsheet and exercise worksheet is here:

Bit.ly/SimResources (gitHub)

or FocusedObjective.com (free stuff)

or @t_magennis (I've post links here)

Every choice we make changes the outcome

[^0]: Can I use velocity rather than throughput?
 Yes. If you do have estimates in story points, then you can sume all of the estimates and use that for input 2 and estimate or use historical team velocity for input 4. The benefit of using throughput (count of

