

Forecasting using Data

Introduction to probabilistic forecasting Using data rather than estimates

Every spreadsheet and exercise worksheet is here:

Bit.ly/SimResources (gitHub)

or FocusedObjective.com (see "free stuff")

Or @t_magennis (I've post links here in my twitter feed)

Or email me: troy.magennis@focusedobjective.com

Every spreadsheet and exercise worksheet is here:

Bit.ly/SimResources (gitHub)

or FocusedObjective.com (free stuff)

or @t_magennis (I've post links here)

Understanding probability - Exercises

Q1. How many different possible values are there for a standard six-sided dice?

A:

Q2. How many values of a six sided dice are less than 4? Tip: Circle the values that are less than 4.

A:

Q3. What is the probability of rolling a value less than 4 on a standard six side dice? Tip: Count the number of "right" values and divide by the total number.

A:

 $p = \frac{Number of "right" values}{Total possible values}$

 $p = \frac{Number \ of "right" \ values}{Total \ possible \ values}$ Number of "right" values 6 $p = \frac{3}{6}$ $p = \frac{1}{2}$ p = 0.5

Sampling

A way to use the data we do have to make predictions & forecasts

Q. How quickly do we discover a range of values by sampling?

Why? Because as we get story count, story size, velocity, Throughput, cycletime. How confident should we be of having found the full range values.

Predicted Expected

- "n" = number of prior samples
- A is the % chance next sample in previous range

n	(n-1)/(n+1)	n	(n-1)/(n+1)
2	33%	16	88%
3	50%	17	89%
4	60%	18	89%
5	67%	19	90%
6	71%	20	90%
7	75%	21	91%
8	78%	22	91%
9	80%	23	92%
10	82%	24	92%
11	83%	25	92%
12	85%	26	93%
13	86%	27	93%
14	87%	28	93%
15	88%	29	93%
		30	94%

Experiment

From a *known* range of values, take samples at random and see how fast we can determine what the full range *might* be.

Compare two ways –

From the computed probability formula
By doubling the average (double what you are told)

Prediction Intervals Exercise

To find how many samples it takes to find the lower and upper bounds of a sample set on average? This exercise simulates finding the upper and lower boundary of a sequential range by sampling the result of dice rolls.

The process

- 1. Roll Dice: Create a random number with a range of 1 to 100. Options:
 - a. A random number generator app on your phone (Randomizers)
 - b. Use three rolls of a six-sided dice (see next page for chart)
 - c. Sum two 10 sided dice (00 90 by 10's) and a traditional (0-9)
- 2. Repeat: Repeat 20 times and record the results in the table below.
- Examine Results: Look at the range between the lowest rolled and highest rolled. Compare against expected.

Questions and discussion topics

- 1. What probability distribution is a single roll?
- 2. What guarantee do I have that I have found the range expected?
- 3. What happens if the data is a Normal (bell curve) distribution?
- 4. What happens if the data is left or right skewed?

Results table

Record each roll and calculate the ranges seen so far after each roll. Are you ahead or behind expected?

n	This Roll	Lowest So Far	Highest So Far	Range So Far = Highest-Lowest	Expected Range $\frac{(n-1)}{(n+1)} imes 100$	Average So Far (expected 50)
1					0	
2					33.3	

3 x 6 Sided Dice

Exercises

- Dice rolling exercise
 - Roll samples from Dice
 - Values from 0 to 99
 - How many rolls before you see: < 10 AND > 90 values

Percentage Dice

(10 sided)

Come to the front when completed. Compare with expected. How close to 9 samples is range of 80 found? (80% range, 10% above?)

Group	# samples > range > 80	# samples until 2 x avg > 80	Group	# samples > range > 80	# samples until 2 x avg > 80
1			8		
2			9		
3			10		
4			11		
5			12		
6			13		
7			14		

A2	2 📫 🔀	1	http://hith	/Throughout
	Α		παρ.// σπ.η	// moughpu
1	Completed Date	٣	Start Date (optional)	Type (optional) 🛛 🗸 Id
2	1/21/1	5	1/14/15	
3	1/26/1	5	1/14/15	Story
4	1/26/1	5	1/14/15	Defect
5	1/26/1	5	1/21/15	Story
6	1/26/1	5	1/22/15	Story
7	1/29/1	5	1/23/15	Story
8	2/2/1	15	1/23/15	Story
9	2/2/1	15	1/20/15	Defect
10	2/2/1	15	1/20/15	Defect
11	2/4/1	15	1/20/15	
12	2/4/1	15	1/26/15	
13	2/4/1	15	1/23/15	
14	2/4/1	15	1/22/15	

MATH with BAD DRAWINGS

Well, not to brag, but my fund has a median gain of 8% per year! MATH with BADDRAWINGS

On average (or median), Arithmetic fails....

1 to 6 days + 1 to 6 + 1 to 6 + 1 to 6 + 1 to 6 = 5 to 30 days

3.5 days + 3.5 + 3.5 + 3.5 + 3.5 = 17.5 days

Siri, Add 1 to 6 five times.

Cortana, Add 1 to 6 five times.

(sometime later)

Alexa, Buy me some Vodka....

Probabilistic Forecasting combines many uncertain inputs to find many possible outcomes, and what outcomes are more likely than others

Time to Complete Backlog

Seeing "How Likely"

Time to Complete Backlog

Sampling with replacement

Trial 1 Trial 2 Trial 100

Sum:	<u>51</u>	<u>28</u>	•••	<u>83</u>
		11		11
		5		13
		7		5
		4		19
		1		35

Q. Could I make a simple forecast tool that worked?

Without macros or add-ins!

http://bit.ly/ThroughputForecast

http://bit.ly/ThroughputForecast

Forecast Completion Date

and estimate or use historical team velocity for input 4. The benefit of using throughput (count of

http://bit.ly/ThroughputForecast

http://bit.ly/ThroughputForecast

Results			
	Duration in		
Likelihood	Week's	Date	
	25	9/23/15	7
95%	18	8/5/15	Almost certain
90%	16	7/22/15	
85%	15	7/15/15	
80%	14	7/8/15	7
75%	13	7/1/15	
70%	12	6/24/15	Consultation to be
65%	12	6/24/15	Somewhat certain
60%	11	6/17/15	
55%	11	6/17/15	
50%	11	6/17/15	
45%	10	6/10/15	7
40%	10	6/10/15	
35%	9	6/3/15	
30%	9	6/3/15	
25%	9	6/3/15	Less than coin-toss odds. But
20%	8	5/27/15	if you are game?
15%	8	5/27/15	
10%	7	5/20/15	
5%	7	5/20/15	

Experiment

From a set of *prior* throughput samples, compute the completion rate(s) for the next 6 (six) weeks.

Process –

 Repetitively sample prior throughput in sets of 6
Compute how many trials complete at least 10, 20, 30, 40, 50, 60 items in 6 weeks

24 Throughput (or velocity) Samples Randomly picked by throwing a dice

Throw a 6-sided dice. Pick the column.
Throw a six-sided dice and pick the row
If it doesn't say "Roll again" this is your throughput sample.

Fill in the numbers for Trials 1, 2 and 3. I've done Trials 4 to 11 so you don't want to kill me!

Repeat until all squares are mea

Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	1
			7	11	7	
			19	7	10	
			6	5	5	
			6	19	5	
			5	7	10	
			5	7	19	

Exercise – Throughput Forecast Monte Carlo Worksheet

Aim: To estimate the number of stories that will be completed by a team for a six (6) week timespan using historical weekly throughput samples for that team. To understand the probability of achieving those estimates.

Process:

- 1. Shuffle the 24 throughput cards or dice (whichever method you choose)
- 2. Pick a card at random or throw dice and record sample in the table below
- 3. Return the card to the deck and reshuffle ("sample with replacement")
- 4. Repeat until all squares are filled

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11

5. Sum of all samples for each trial by column (upper) / Nearest "tens" grouping rounded down (lower)

	48	56	56	31	62	53	45	53
	40+	50+	50+	30+	60+	50+	40+	50+

6. Sum all trials (a):

Average all trials (a/11):

We randomly

sampled trials 4 to 11

for you to save time.

Actual data average 6 week throughput = 57.75. How close was your average?

7. Probabilities of achieving at least n stories for a six-week timespan

Six Week Throughput	Count trial sum groups at least 30,40, 50, etc. stories	(Count / 11) Likelihood	This value is 0 to 1
At least 30 stories			to get a percentage
At least 40 stories			0% = no chance,

Come to the front and give me your Likelihood of 60, 70 and 80 stories

Group	% >= 40 stories	% >= 50 stories	% > 60 stories
1			
2			
3			
4			
5			
6			
7			

Group	% >= 40 stories	% >= 50 stories	% > 60 stories
8			
9			
10			
11			
12			
13			
14			

Every spreadsheet and exercise worksheet is here:

Bit.ly/SimResources (gitHub)

or FocusedObjective.com (free stuff)

or @t_magennis (I've post links here)

Every choice we make changes the outcome

