

Software Development Performance Measurement Specifications Version 2.0

Software Development Performance Index
(SDPI) measurement specifications

Summary
The Software Development Performance Index framework codifies a balanced set of
outcome measures that, when used within Rally® Unlimited Edition, can give you feedback
on your own teams and organization. This document explains the SDPI and how these
metrics are calculated. To learn more, please visit www.rallydev.com.

Time buckets
Each metric is calculated for a particular time bucket. The summary SDPI charts are most
commonly shown in quarters. The drill down charts are most commonly shown in months.

Real teams from projects
The "Project" entity in Rally is the team container but its hierarchical nature means that some
"Projects" represent other organizational entities (meta-teams, divisions, departments, etc.).
Some may even represent projects. To determine which "Project" entities are actually teams,
we use a Bayesian classifier that looks at how much work is contained in the "Project", how
close to the leaf of the hierarchy it sits, and a number of other characteristics.

Team size
We heuristically extract team membership by looking at who is working on what items and
who is the owner of those work items. We then determine what fraction of the time each
person is working on each team. The team size is the sum of these fractions.

Percentile scoring
The units for each raw metric are different. For some metrics higher is better whereas lower
is better for others. To make it easier to interpret the metric and enable the aggregation of
dissimilar units into a single index, raw metrics are converted into a percentile score across
the entire distribution of all similar metrics. Higher is always better for percentiles.

Calculating the index
The SDPI is made up of several dimensions. Each raw metric is percentile scored and one or

Rally Software© www.rallydev.com 2014-09-15

http://www.rallydev.com/

Software Development Performance Measurement Specifications Version 2.0

more of those are averaged to make up a particular dimension (e.g. Quality dimension is the
percentile score of defect density for defects found in production averaged with the
percentile score of defect density for defects found in test). To calculate the overall SDPI, we
take the average of the contributing dimensions' scores. If there are four dimensions, then
the max contribution of any one will be 25 to this final SDPI score.

Responsiveness score from Time in Process (TiP)
Time in Process (TiP) is the amount of time (in fractional days) that a work item spends in a
particular "state". Weekends, holidays, non-work hours are not counted. We take the median
TiP of all the work items that completed in a particular time bucket (say January, 2013) and
record that as the TiP for that time bucket. While other parameters are possible, we primarily
look at the TiP of User Stories and we define "in Process" as ScheduleState equals
“In-Progress” or “Completed”.

Quality score from Defect Density
Defect density is the count of defects divided by man days, where man days is team size
times the number of workdays in that time bucket. This results in a metric that represents the
number of defects per team member per workday.

We look at both the defects found in production as well as those found in test and other
areas as indicated by the "Environment" field in Rally. We sense whether or not defects are
typically being recorded in Rally for each of these types for each team over a time period and
only use it if it passes this test. We'll take either as the Quality Score or the average of the
two if both are reliably recorded.

Productivity score from Throughput / team size
Throughput is simply the count of User Stories, Defects, and Features completed in a given
time period. The productivity score is the percentile scoring of this Throughput normalized by
the team size. While Defects and Features are shown in the drill down charts, currently only
User Stories contribute to the Productivity Score of built in scorecards.

Predictability score from Throughput variability
Throughput variability is the standard deviation of Throughput for a given team over 3
monthly periods divided by the average of the Throughput for those same 3 months. This is
referred to as the Coefficient of Variation (CoV) of Throughput. Again, we only look at User
Stories for this Predictability Score.

Rally Software© www.rallydev.com 2014-09-15

Software Development Performance Measurement Specifications Version 2.0

Summary
Time buckets
Real teams from projects
Team size
Percentile scoring
Calculating the index
Responsiveness score from Time in Process (TiP)
Quality score from Defect Density
Productivity score from Throughput / team size
Predictability score from Throughput variability

Decision versus outcome measurements
Scores
Time box granularity
Snapshots and the temporal data model
"Real" teams
Percent Dedicated Work

Type: decision
Formula
Data cleaning

Full-Time Equivalent
Type: decision
Formula

Team Stability
Type: decision
Formula

Process Type
Type: decision
Formula

Time in Process (TiP) and Responsiveness score
Type: outcome
Variations:
Formula

Defect Density and Quality score
Type: outcome
Variations:
Formula

Throughput and Productivity score
Type: outcome
Variations:
Formula

Throughput Variation and Predictability score
Formula

Rally Software© www.rallydev.com 2014-09-15

Software Development Performance Measurement Specifications Version 2.0

Decision versus outcome measurements
The measurements below are generally targeted at characterizing a decision or an outcome.
An organization either decides to split people across many projects or they dedicate them to
one. The Percent Dedicated Work measurement extracts this decision. Defect Density is an
example of an outcome measurement.

Although not strictly accurate, they can be thought of as input and output variables in a
correlation analysis.

Scores
Raw outcome measures are translated into a "score" so they can be easily interpreted as
indicators of performance. Measures closer to 100 are good, measures closer to 0 are bad.
The raw measure and the score are both available for analysis.

Time box granularity
Unless otherwise specified, each metric specified below is calculated for each of the
following time boxes:

● Month
● Quarter (Calendar)
● 3-month (sliding)
● 6-month (sliding)
● 12-month (sliding)
● Iteration (not yet as-of 2013-09-01)

The sliding window measurements are useful when trying to identify a correlation where the
impact of a decision measurement for a given month might correlate with the outcome
measurement over the course of several following months. For instance, field-reported
defects will trickle in over time. So, logically, we would expect a change in this measurement
to be evident for several months after the impacting decision. The empirical evidence
supports this trailing effect because bad decision metrics (non-dedicated-ness) correlate
best with the 6-month trailing defect density metric.

Snapshots and the temporal data model
We do not directly measure things like Percent Dedicated Work. It and the other
measurements specified in this document are built from snapshots of changes representing
transactions of users working with artifacts in their project management, source code
management, build, or bug tracking systems. A detailed discussion of this data model
including its data structures, constraints, and operations can be found here. Many of the
details of calculating these metrics cannot be understood without at least a basic
understanding of this underlying snapshot data structure and temporal data model.

Rally Software© www.rallydev.com 2014-09-15

https://rally1.rallydev.com/analytics/doc/Analytics2.0LookbackAPIUserManual.html

Software Development Performance Measurement Specifications Version 2.0

"Real" teams
In addition to being associated with a time box, every measurement in the data set is also
associated with a team. Our data set does not have a strict definition of a team. Rather, it
includes the concept of a team/project hierarchy, where higher level entries might represent
divisions or teams of teams and lower level entries represent the team itself. It is also fairly
common for a team to break their work down into project streams. This is a typical
team/project tree:

● Division ABC
○ Meta-team I

■ Team A
● Team A - project 1
● Team A - project 2

■ Team B
○ Meta-team II

■ Team C
■ Team D

● Division XYZ
○ ...

Since the data is non-attributable and huge (25,000 projects) we have no way of asking
which entries in this tree represents a "real" team. So, we heuristically extract this using a
Bayesian classifier. The features that the classifier keys off of include:

● The number of levels from the leaf nodes of the current branch of the project tree.
"Real teams" tend to be at the leaf nodes, which is 0, or one level up, which is 1.

● The number of work items in-progress in the node.
● The full-time equivalent value for the node. “Real teams” tend to have between 5 and

8 members, and outside of this range, the probability of being a “real team”
decreases.

Measurements

Percent Dedicated Work
This measurement indicates how much of the work for a given team is done by folks
"dedicated" to that team.

Type: decision

Formula
1. Find all transactions (snapshots) for stories, defects, and tasks that are in progress,

have no children, have an owner (user), and are not blocked.

Rally Software© www.rallydev.com 2014-09-15

Software Development Performance Measurement Specifications Version 2.0

2. Sum all transactions by user , project , and user contribution to a projectU total P total
 where (i.e. user’s with a total trans action count less than or equal toUproject U total > 5

5 are not counted towards or).Uproject P total

3. Find the percent of a user’s total work each project represents: 00Upercent = U total

Uproject ∙ 1

4. Count as "dedicated" for a given project, the users whose is greater than 70%Upercent

for that project. This threshold was determined by experimentation with a training set
of data from teams with known "dedicated" members.

5. For each project sum the dedicated user transactions: , for allP dedicated = Σ Uproject

dedicated members.
6. Find the percent of dedicated work for each project: 00P percent dedicated = P total

Pdedicated ∙ 1

Data cleaning
The transactions of any user with 5 of less transactions in a given timebox/project pair are
ignored when calculating or . This removed a lot of noise associated with folksUproject P total

who are not true team members (managers, admins, etc.).

Full-Time Equivalent
This measurement is an indicator of team size including contributions from part-time
contributors to the team.

Type: decision

Formula
1. Find all transactions (snapshots) for stories, defects, and tasks that are in progress,

have no children, have an owner (user), and are not blocked.
2. Sum all transactions by user , project , and user contribution to a projectU total P total

 where (i.e. user’s with a total transaction count less than or equal to 5Uproject U total > 5

are not counted towards or).Uproject P total

3. Find the fraction of a user’s total work each project represents: U f te = U total

Uproject

4. Sum the full-time equivalent for each project: . UP f te = Σ f te

Team Stability
This is an indication of the team's stability. For example, given:

Month n:
 George: 90% dedicated
 Joe: 50%
 Jen: 80%

Rally Software© www.rallydev.com 2014-09-15

Software Development Performance Measurement Specifications Version 2.0

Month n + 1:
 George: 75% (-15% delta)
 Jen: 100% (+20%)
 Jeff: 25% (new) (+25%)
 Joe: missing (-50%)

The TeamGrowth metric for the team would be .2 + .25 = .45 divided by the current team
size (2) or 22.5%.

The TeamShrinkage metric for the team would be |-.15| + |-.5| = .65 divided by the old team
size (2.2) or 29.54%.

The total volatility would be the sum of the two prior metrics or roughly 52% and Team
Stability would be 100 - 52/2 = 74

Type: decision

Formula
1. Find all transactions (snapshots) for stories, defects, and tasks that are in progress,

have no children, have an owner (user), and are not blocked.
2. Sum all transactions by user , project , and user contribution to a projectU total P total

 where (i.e. user’s with a total transaction count less than or equal to 5Uproject U total > 5

are not counted towards or).Uproject P total

3. Find the fraction of a user’s total work each project represents for all time periods:
U f te = U total

Uproject

4. Sum the full-time equivalent for each project for all time periods: . UP f te = Σ f te

5. For each project and each pair of adjacent time periods (and) compute:t t − 1

a. Team growth by 00P growth = P fte,t
Σ max(0, U −U)fte,t fte,t−1 ∙ 1

b. Team shrinkage by 00P shrinkage = P fte,t−1
Σ max(0, U −U)fte,t−1 fte,t ∙ 1

c. Team stability by 00P stability = 1 − 2
(P +P)growth shrinkage

Process Type
This measurement is an indicator of what flavor of agile process a team is using.

Type: decision

Formula
1. Find all snapshots for stories whose ScheduleState >= "In-Progress" and have no

children.

Rally Software© www.rallydev.com 2014-09-15

Software Development Performance Measurement Specifications Version 2.0

2. Sum the total number of unique stories for each project in each time period.Stotal
3. Sum the total number of unique stories that have a non-null field for each projectSf ield

in each time period where is each of c_KanbanState, Iteration, TaskActualTotal,ieldf
TaskRemainingTotal, TaskEstimateTotal, and PlanEstimate.

4. For each project in each time period, divide the sum for each field by the total number
of unique stories and multiply by 100 to get the percent of stories with the field:

00P f ield =
Sfield
Stotal

∙ 1

5. After calculating the percent of stories with each field, the project is assigned a value
for process type as specified in the following table:T process

T process f...i

Kanban,ScrumBan 0 0P kanbanState ≥ 9 ⋀P iterations ≥ 9

Kanban,No Iterations 0 0P kanbanState ≥ 9 ⋀P iterations < 9

Iterative,Scrum,Full 0 0 P kanbanState < 9 ⋀P iterations ≥ 9 ⋀
0 0P planEstimate ≥ 5 ⋀P taskEstimateTotal ≥ 5

Iterative,Scrum,Story points
only

0 P 0kanbanState < 9 ⋀P iterations ≥ 9 ⋀
0 0P planEstimate ≥ 5 ⋀P taskEstimateTotal < 5

Iterative,Scrum,Tasks only 0 0 P kanbanState < 9 ⋀P iterations ≥ 9 ⋀
0 0P planEstimate < 5 ⋀P taskEstimateTotal ≥ 5

Iterative,Other 0 0 P kanbanState < 9 ⋀P iterations ≥ 9 ⋀
0 0P planEstimate < 5 ⋀P taskEstimateTotal < 5

Other,Estimates 0 0 P kanbanState < 9 ⋀P iterations < 9 ⋀
P 0 0)(planEstimate ≥ 5 ⋁P taskEstimateTotal ≥ 5

Other,No estimates 0 0 P kanbanState < 9 ⋀P iterations < 9 ⋀
0 0P planEstimate < 5 ⋀P taskEstimateTotal < 5

Time in Process (TiP) and Responsiveness score
Time in process (TiP) is a measure for an individual work item (story, defect, feature)
indicating how much work-day time (excluding non-work hours, weekends, and holidays) it
spent "in process". For stories and defects, "in process" is defined by the ScheduleState
field being either "In-progress" or "Completed" (often means "In-test"). For features, "in
process" is when ActualStartDate is set and PercentDoneByStoryCount is less than 100%.
 Although not calculated exactly the same, it is analogous to the common definition of
cycle-time or lead-time. For a given project/time-box pair, an aggregation (median, a.k.a.
p50) of the TiP of the work items that completed during that time box for that project is

Rally Software© www.rallydev.com 2014-09-15

Software Development Performance Measurement Specifications Version 2.0

computed. The responsiveness score is based on the percentile of the median. Higher
values will result in lower scores, and vice versa.

The median or p50 is used rather than the arithmetic mean as the aggregation because the
distribution of TiP measurements for individual work items is far from normal and frequently
includes outliers. Median deals well with the non-normal distribution and does not allow a
single outlier to greatly impact the measurement like an arithmetic mean would. The data set
also includes p75, p85, p95, p99 representing the 75th, 85th, 95th, and 99th percentile
coverage levels for the set of completed work items but we currently only use the p50
(median) to calculate the score.

Type: outcome

Variations:
● Stories, Defects, and Features

Formula
1. Find all Stories, Defects, and Features that were in progress, then moved to

completed within the time frame under consideration.
a. Stories and Defects are considered completed when cheduleState Accepted"S ≥ "

.
b. Features are considered completed when .ercentDoneByStoryCount 00%P → 1

2. Calculate a TiP value for each of those Stories, Defects, and Features.
a. Story and Defect TiP is the duration where

.In Progress" cheduleState Accepted"" ≤ S < "
b. Feature TiP is the duration between and whenctualStartDateA

.ercentDoneByStoryCount 00%P → 1
3. The Responsiveness score is the percentile rank of the p50 TiP value for Stories.

Defect Density and Quality score
Defect density is merely the count of defects over some normalizing size measurement. In
our case we use the team's man-days (FTE * the number of working days in the period) as a
proxy for size.

Type: outcome

Variations:
● All defects ("Defect") or just defects found in production ("ReleasedDefect")

Formula
1. Count all defects and defects released to production for each project.Dall Dreleased
2. Calculate defect density for each project by:E

Rally Software© www.rallydev.com 2014-09-15

Software Development Performance Measurement Specifications Version 2.0

Eall =
Dall
P ∙Wfte

Ereleased = P ∙Wfte

Dreleased

where is the project’s full-time equivalent and is the number of working daysP f te W

in the time period under consideration.
3. For each project, determine if either defects or released defects are being tracked by

checking if the defect count is greater than zero for the year granularity that ends at
the same time as the granularity under consideration. So for example, if the
granularity is a quarter ending on 2013-01-01, we check the full year ending on
2013-01-01 to see if the defect count for the year is non-zero.

4. Compute defects per 1000 man days by:
000Sall = 1 ∙ Eall

Sreleased = 1000 ∙ Ereleased
5. For each project where defect data is tracked, compute the quality score. Defect

density is scored based on percentiles. If a project has the highest measured value
for defect density, it is in the 99th percentile, therefore its score is . If a9 99 − 9 = 0
project has the lowest measured value for defect density, it is in the 0th percentile,
therefore its score is .9 99 − 0 = 9

ercentile(S)Qall = p all
ercentile(S)Qreleased = p released

6. The total quality score is the quality score for all defects: . Projects notQtotal = Qall
tracking defects will have no quality score.

Throughput and Productivity score
Throughput is a measure of how much work is completed in a given time period. Within a
single team, throughput can be compared over time. However, the size of a work item can
vary greatly by context so it's hard to compare this across teams. It can also be compared
across teams when the size of a work item is controlled. For instance, some organizations
will require that each story should be between 0.5 and 3 man days of work. We do not know
this information however, so when calculating the "score" we simply look at number of
completed stories normalized by the team size (FTE). Throughput per team member is
scored based on percentiles. Higher values result in higher scores, and vice versa.

Type: outcome

Variations:
● Defects, Stories, or Features
● Counts or Story Points - The formula below describes the computation by counts of

these items. However, we also compute "throughput" (or "velocity" if you prefer) for
stories and defects using the sum of the story points of all work items that make the
appropriate transition. We do not yet have a good mechanism to identify which teams
consistently use story points so the counts are the preferred variation at this time. The

Rally Software© www.rallydev.com 2014-09-15

Software Development Performance Measurement Specifications Version 2.0

development of iteration-based measures is underway and includes research to
explore better use of story points.

Formula
1. For each project, compute throughput as the sum ofT

a. the count of all stories and defects that transitioned forward into the accepted
state minus the count of all stories that transitioned backwards out of the
accepted state.

b. the count of all features that transitioned forward to 100% complete by story
count minus the count of all features that were 100% complete by story count
but transitioned backward into < 100% complete by story count.

2. Compute the throughput per team member by dividing throughput by full-time
equivalent: T f te = T

P fte

3. Score based on its percentile. If a project has the highest measured value for T f te T f te
, it is in the 99th percentile, and 99 is its score. If a project has the lowest measured
value for , it is in the 0th percentile, and 0 is its score.T f te

Throughput Variation and Predictability score
Having a stable throughput can be as important as having a high throughput. The coefficient
of variation of throughput across several time periods is calculated and translated into a
score.

Formula
1. For each project, compute throughput for each month as the count of all storiesT i

that transitioned forward into the accepted state minus the count of all stories that
transitioned backwards out of the accepted state.

2. For each group of 3 and 6 adjacent months , compute the:T
a. average vg(T)a
b. standard deviation td(T)s
c. coefficient of variation oVC = std(T)

avg(T)

3. Score based on its percentile. If a project has the highest measured value foroVC
, it is in the 99th percentile, therefore its score is . If a project has theoVC 9 99 − 9 = 0

lowest measured value for , it is in the 0th percentile, therefore its score isoVC
.9 99 − 0 = 9

Rally Software© www.rallydev.com 2014-09-15

